
Appendix to: “An Estimation of Economic Models

with Recursive Preferences”∗

Xiaohong Chen

Yale

Jack Favilukis

LSE

Sydney C. Ludvigson

NYU and NBER

First draft: January 27, 2005
This draft: October 3, 2012

∗Chen: Department of Economics Yale University, Box 208281, New Haven, CT 06520, Email: xiao-

hong.chen@yale.edu, Tel: (203) 432-5852; http://cowles.econ.yale.edu/faculty/chen.htm. Favilukis:

Department of Finance, London School of Economics, Houghton Street, London WC2A 2AE; Email:

j.favilukis@lse.ac.uk, http://pages.stern.nyu.edu/~jfaviluk. Ludvigson: Department of Economics,

New York University, 19 W. 4th Street, 6th Floor, New York, NY 10012; Email: sydney.ludvigson@nyu.edu;

Tel: (212) 998-8927; http://www.econ.nyu.edu/user/ludvigsons/. We acknowledge financial support

from the National Science Foundation (Chen and Ludvigson) and from the Alfred P. Sloan Foundation

(Ludvigson). Any errors or omissions are the responsibility of the authors, and do not necessarily reflect the

views of the National Science Foundation.



Appendix to: “An Estimation of Economic Models
with Recursive Preferences”

Abstract

This document is the on-line Appendix to accompany “An Estimation of Economic Mod-

els with Recursive Preferences,” by Jack Favilukis, Sydney C. Ludvigson, and Xiaohong

Chen. The appendix consist of several parts: Section 1 describes the data. Section 2 dis-

cusses how the unknown continuation value function is approximated, including discussion of

the arguments of Vt
Ct
, and the choice of sieve function to approximate F (·). Section 3 provides

details of the two-step semiparametric estimation procedure, including the implementation

of the SMD estimator as an instance of GMM. Section 4 presents additional results from the

estimation not reported in the paper.



1 Data Description

The sources and description of each data series we use are listed below.

AGGREGATE CONSUMPTION

Aggregate consumption is measured as expenditures on nondurables and services, excluding

shoes and clothing. The quarterly data are seasonally adjusted at annual rates, in billions

of chain- weighted 2000 dollars. The components are chain-weighted together, and this

series is scaled up so that the sample mean matches the sample mean of total personal

consumption expenditures. Our source is the U.S. Department of Commerce, Bureau of

Economic Analysis.

STOCKHOLDER CONSUMPTION

The definition of stockholder status, the consumption measure, and the sample selection

follow Vissing-Jorgensen (2002). Consumption is measured as nondurables and services

expenditures. Details on this construction can be found in Appendix A of Malloy, Moskowitz,

and Vissing-Jorgensen (2009). We use their “simple” measure of stockholders, based on

responses to the survey indicating positive holdings of “stocks, bonds, mutual funds and

other such securities.” Nominal consumption values are deflated by the BLS deflator for

nondurables for urban households. Our source is the Consumer Expenditure Survey.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Consumption, wealth, labor income, and dividends are in per

capita terms. Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

Real asset returns are deflated by the implicit chain-type price deflator (2000=100) given for

the consumption measure described above. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

MONTHLY INDUSTRIAL PRODUCTION INDEX

Industrial production is measured as the seasonally adjusted total industrial production

index (2002=100). Our source is the Board of Governors of the Federal Reserve System.

MONTHLY SERVICES EXPENDITURES

Measured as personal consumption expenditures on services, billions of dollars; months sea-

sonally adjusted at annual rates. Nominal consumption is deflated by the implicit price

deflator for services expenditures. Our source is the Bureau of Economic Analysis.

ASSET RETURNS

1



• 3-Month Treasury Bill Rate: secondary market, averages of business days, discount
basis percent; Source: H.15 Release —Federal Reserve Board of Governors.

• 6 size/book-market returns: Six portfolios, monthly returns from July 1926-December

2001. The portfolios, which are constructed at the end of each June, are the inter-

sections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed

on the ratio of book equity to market equity (BE/ME). The size breakpoint for

year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last fiscal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE

percentiles. Source: Kenneth French’s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.

PROXY FOR LOG CONSUMPTION-WEALTH RATIO, ĉay

The proxy for the log consumption-wealth ratio is computed as described in Lettau and

Ludvigson (2001).

RELATIVE BILL RATE, RREL

The relative bill rate is the 3-month treasury bill yield less its four-quarter moving average.

Our source is the Board of Governors of the Federal Reserve System.

LOG EXCESS RETURNS ON S&P 500 INDEX: SPEX

SPEX is the log difference in the Standard and Poor 500 stock market index, less the log

3-month treasury bill yield. Our source is the Board of Governors of the Federal Reserve

System.

Rm, SMB, HML

The Fama/French benchmark factors, Rm, SMB, and HML, are constructed from six size/book-

to-market benchmark portfolios that do not include hold ranges and do not incur transaction

costs. Rm, the return on the market, is the value-weighted return on all NYSE, AMEX, and

NASDAQ stocks. Source: Kenneth French’s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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2 Approximation to Continuation Value Function F ()

The arguments of F (·). If the Markov structure is linear, we give assumptions under which
Vt
Ct

= F
(
Vt−1
Ct−1

, Ct
Ct−1

)
. The system in the text is repeated here for exposition:

ct+1 − ct = µ+Hxt +Cεt+1 (1)

xt+1 = φxt +Dεt+1, (2)

where εt+1, C, and D are 2× 1 vectors defined:

εt+1 ≡
[
εc,t+1

εx,t+1

]

C ≡ [σc + φxσx]

D ≡ [φcσc + σx] .

First, note that the state variable xt is latent to the econometrician. We therefore form

an estimate of xt by applying the Kalman filter to the system (1) and (2). The Kalman filter

implies that the dynamic system (1) and (2) converges asymptotically to time-invariant

innovations representation taking the form

∆ct+1 = µ+Hx̂t + εt+1 (3)

x̂t+1 = φx̂t +Kεt+1, (4)

where the scalar variable εt+1 ≡ ∆ct+1− ∆ĉt+1 = H (xt − x̂t) + Cεt+1, x̂t denotes a linear

least squares projection of xt onto ∆ct,∆ct−1, ...∆c−∞, and

K ≡ (DC′ + φPH) (H ′PH +CC′)
−1

= (DC′ + φPH)
(
H2P +CC′

)−1
(5)

(because H is scalar here) where P solves

P = (φ−KH)2 P + (D−KC) (D−KC)′ .

(See Hansen and Sargent (2007).) The representation (3)-(4) shows that the observable state

variable x̂t replaces the latent state variable xt as the argument of the function over which
Vt
Ct
is defined. Note that, if either of the parameters φx or φc is different from zero, the
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innovation in the observation equation (1) will be correlated with the innovation in the state

equation (2).

Assume Vt
Ct
is an invertible function f (x̂t) with f ′ (x̂t) > 0. Then,

x̂t = f−1

(
Vt
Ct

)
is also an increasing function. From (4) we have

Vt
Ct

= f (x̂t) = f (φx̂t−1 +Kεt) . (6)

By inverting (3), we obtain

εt = ∆ct − µ−Hx̂t−1

= ∆ct − µ−Hf−1

(
Vt−1

Ct−1

)
. (7)

Plugging (7) into (6), we have

Vt
Ct

= f

(
φf−1

(
Vt−1

Ct−1

)
+K

[
∆ct − µ−Hf−1

(
Vt−1

Ct−1

)])
= f

(
[φ−KH] f−1

(
Vt−1

Ct−1

)
+K [∆ct − µ]

)
(8)

≡ F

(
Vt−1

Ct−1

,
Ct
Ct−1

)
.

where F : R2 → R.
Two aspects of this application of the Kalman filter bear noting. First, the linear Markov

structure implies that F is a monotonic function of Ct
Ct−1

. Second, the function Vt
Ct
may display

negative serial dependence under a variety of circumstances, for example if the innovations in

(1) and (2) are positively correlated, or if the autocorrelation in xt is low. To see this, notice

from equation (8) we can see that Vt
Ct
will display negative serial dependence if φ < KH.

From (5) we have

K ≡ (DC′ + φPH)
(
H2P +CC′

)−1

=
(
φcσ

2
c + φxσ

2
x + φPH

) (
H2P + σ2

c + φ2
xσ

2
x

)−1
=>

KH = φ

[
PH2

H2P + σ2
c + φ2

xσ
2
x

]
+

[
Hφcσ

2
c +Hφxσ

2
x

H2P + σ2
c + φ2

xσ
2
x

]
.

The first term in square brackets, multiplying φ, is less than one in absolute value, so that

if the second term in square brackets is zero (which will be true if for example φx = φc = 0),
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φ > KH and Vt
Ct
will display positive serial dependence. But more generally, the second term

can be suffi ciently positive such that φ < KH and Vt
Ct
exhibits negative serial dependence.

To determine the circumstances under which φ < KH requires using a numerical algorithm

to solve recursively for K and P under some values for the primitive parameters of Markov

system (1)-(2), and then computing the resulting value for φ −KH. A range of cases can
be found for which φ −KH < 0, including those when φ is not too large, and when φx or

φy 6= 0.

The assumptions embedded in this example are meant to be illustrative: more general

nonlinear state space models and distributional assumptions are likely to produce more com-

plicated dynamic relationships between Vt
Ct
and its own lagged value, as well as consumption

growth.

B-spline Approximation of F (·). We use cubic B-splines to approximate the unknown
continuation value-consumption ratio function because unlike other basis functions (e.g.,

polynomials) they are shape-preserving (Chui (1992)). The multivariate sieve functions

{Bj(·, ·) : j = 1, ..., KT} are implemented as a tensor product cubic B-spline taking the form:

F (z, c) = α0 +

K1T∑
i=1

K2T∑
j=1

aijBm

(
z − i+

m

2

)
Bm(

c

∆2

+ ς − j), (9)

where z ≡ Vt
Ct
, c ≡ Ct+1

Ct
, Bm(.) is a B-spline of degree m, and aij are parameters to be

estimated. The term m
2
recenter the function, which insures that the function is shape-

preserving (preserving nonnegativity, monotonicity and convexity of the unknown function

to be approximated). For consumption growth the parameters ∆2 and ς are set to guarantee

that the support of Bm stays within the bounds [0.97, 1.04] since this is the range for which

we observe variation in gross consumption growth data. This insures that as j goes from 1

to K2T , Bm is always evaluated only over the support [0.97, 1.04]. ∆2 fixes the support of

the spline. By shifting i and j, the spline is moved on the real line.

We use a cardinal B-spline given by

Bm(y) =
1

(m− 1)!

m∑
k=0

(−1)k
(
m

k

)
[max (0, y − k)]m−1 , with

(
m

k

)
≡ m!

(m− k)!k!
.

The order of the spline, m, for our application is set to 3. For the dimensionality of the B-

spline sieve, we setK1T = K2T = 3. Because asymptotic theory only provides guidance about

the rate at which K1T ·K2T + 1 must increase with the sample size T , other considerations

must be used to judge how best to set this dimensionality. The bigger are K1T and K2T , the

greater is the number of parameters that must be estimated, therefore the dimensionality
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of the sieve is naturally limited by the size of our data set. With K1T = K2T = 3, the

dimension of the total unknown parameter vector, (δ,F )′ =
(
β, ρ, θ, a0, a11, ..., aK1TK2T

, V0
C0

)′
,

is 14, estimated using a sample of size T = 213. In practice, we obtained very similar results

setting K1T = K2T = 4.

3 Semiparametric Two-Step Estimation Procedure

We use D ≡ [β, β] × [θ, θ] × [ρ, ρ] to denote the compact parameter space for the finite-

dimensional unknown parameters δ = (β, θ, ρ)′, and V denotes the function space for the
infinite dimensional unknown function F (). In the application we assume that V is a Holder
ball:

V ≡ {g : (0,∞)× (0,∞)→ (0,∞) : ‖g‖Λs ≤ const. <∞} , for some s > 1, (10)

here the norm ‖g‖Λs is defined as

||g||Λs ≡ sup
x,y
|g(x, y)|+ max

a1+a2=[s]
sup

(x,y)6=(x,y)

|∂a1x ∂a2y g(x, y)− ∂a1x ∂a2y g(x, y)|√
(x− x)2 + (y − y)2

s−[s]
<∞,

where [s] denotes the largest non-negative integer such that [s] < s, and (a1, a2) is any pair

of non-negative integers such that a1 + a2 = [s].

For any candidate value δ = (β, θ, ρ)′∈D, we define

F ∗ (·; δ) ≡ arg inf
F∈V

E{m(wt, δ, F )′m(wt, δ, F )},

wherem(wt, δ, F )′ ≡ E{γ(zt+1, δ, F )|wt} = (m1(wt, δ, F ), ...,mN(wt, δ, F )) andmi(wt, δ, F ) ≡
E{γi(zt+1, δ, F )|wt} for i = 1, ..., N . Next we define the pseudo true value δ∗ = (β∗, θ∗, ρ∗)′∈D
as

δ∗W ≡ arg min
δ∈D

[E {γ(zt+1, δ, F
∗ (·, δ))⊗ xt}]′W [E {γ(zt+1, δ, F

∗ (·, δ))⊗ xt}] ,

whereW is some positive definite weighting matrix and xt is any chosen measurable function

of wt.

We say the model is correctly specified if

E {γi(zt+1, δo, F
∗ (·, δo))⊗ xt} = 0, i = 1, ..., N. (11)

When the model is correctly specified, we have δ∗W = δo and F ∗ (·, δo) = Fo, and these

true parameter values δo, F ∗ (·, δo) do not depend on the choice of the weighting matrix
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W. However, when the model could be misspecified, then the pseudo true values δ∗W and

F ∗ (·, δ∗W) typically will depend on the weighting matrixW.

Two-step Semiparametric Estimation Procedure. In Step One, for any candidate value

δ = (β, θ, ρ)′∈D, we estimate F ∗ (·; δ) by the sieve minimum distance (SMD) estimator

F̂T (·; δ):

F̂T (·, δ) = arg min
FT∈VT

1

T

T∑
t=1

m̂(wt, δ, FT )′m̂(wt, δ, FT ), (12)

where m̂(wt, δ, F )′ = (m̂1(wt, δ, F ), ..., m̂N(wt, δ, F )) is some nonparametric estimate of

m(wt, δ, F ), and VT is a sieve space that approximates V. In the application we let VT be
the tensor product B-spline (9) sieve space, which becomes dense in V as sample size T →∞.
In Step Two, we estimate δ∗W by minimizing a sample GMM objective function:

δ̂W = arg min
δ∈D

[
gT (δ, F̂T (·, δ) ;yT )

]′
WT

[
gT ((δ,F̂T (·, δ) ;yT )

]
, (13)

where yT =
(
z′T+1, ...z

′
2,x

′
T , ...x

′
1

)′
denotes the vector containing all observations in the sam-

ple of size T , and WT is a positive, semi-definite possibly random weighting matrix that

converges toW, also,

gT (δ, F̂T (·, δ) ;yT ) =
1

T

T∑
t=1

γ(zt+1, δ, F̂T (·, δ))⊗ xt (14)

are the sample moment conditions.

We have considered two kinds of GMM estimation of δ∗W in Step Two: (i) GMM esti-

mation of δ∗W using xt = 1N as the instruments and WT= G−1
T as the weighting matrix,

where the (i, j)th element of GT is 1
T

∑T
t=1Ri,tRj,t for i, j = 1, ..., N . This leads to the GMM

estimate using HJ criterion. (ii) GMM estimation of δ∗W using xt = 1N as the instruments

andWT= I as the weighting matrix, where I is the N ×N identity matrix.

The SMD procedure in Step One has been proposed respectively in Newey and Powell

(2003) for nonparametric IV regression, and in Ai and Chen (2003) for semi/nonparametric

conditional moment restriction models. The SMD procedure needs a nonparametric estima-

tor m̂(wt, δ, F ) for m(wt, δ, F ). There are many nonparametric procedures such as kernel,

local linear regression, nearest neighbor and various sieve methods that can be used to esti-

mate mi(wt, δ, F ), i = 1, ..., N . In our application we consider the sieve Least Squares (LS)

estimator. For each fixed (wt, δ, F ), we approximate mi(wt, δ, F ) by

mi(wt, δ, F ) ≈
JT∑
j=1

aj(δ, F )p0j(wt), i = 1, ..., N,
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where p0j some known fixed basis functions, and JT → ∞ slowly as T → ∞. We then
estimate the sieve coeffi cients {aj} simply by OLS regression:

min
{aj}

1

T

T∑
t=1

[γi(zt+1, δ, F )−
JT∑
j=1

aj(δ, F )p0j(wt)]
′[γi(zt+1, δ, F )−

JT∑
j=1

aj(δ, F )p0j(wt)]

and the resulting estimator is denoted as: m̂i(w, δ, F ) =
∑JT

j=1 âj(δ, F )p0j(wt). In the

following we denote: pJT (w) = (p01(w), ..., p0JT (w))′ and P = (pJT (w1), ..., pJT (wT ))′, then:

m̂i(w, δ, F ) =
T∑
t=1

γi(zt+1, δ, F )pJT (wt)
′(P′P)−1pJT (w), i = 1, ..., N. (15)

Many known sieve bases could be used as {p0j}. In our application we take the power series
and Fourier series as the pJT (w). The empirical findings are not sensitive to the different

choice of sieve bases, and we only report the results based on power series due to the length

of the paper.

GMM Implementation of SMD Estimation. When the nonparametric estimator m̂i(w, δ, F )

is the linear sieve estimator (15), the first step SMD estimation of F ∗ (·; δ) can be alterna-

tively implemented via the following GMM criterion (16):

F̂T (·, δ) = arg min
FT∈VT

[
gT (δ,FT ;yT )

]′ {IN⊗ (P′P)
−1}

[
gT (δ,FT ;yT )

]
, (16)

where yT =
(
z′T+1, ...z

′
2,w

′
T , ...w

′
1

)′
denotes the vector containing all observations in the

sample of size T and

gT (δ,FT ;yT ) =
1

T

T∑
t=1

γ(zt+1, δ,FT )⊗pJT (wt) (17)

are the sample moment conditions associated with the NJT × 1 -vector of population un-

conditional moment conditions: E {γi(zt+1, δ, F
∗ (·, δ))p0j(wt)}, i = 1, ..., N , j = 1, ..., JT .

4 Additional Empirical Results

4.1 Fixing the EIS = 1

Several authors have focused on the cross-sectional implications of EZW preferences when the

EIS, ρ−1, is restricted to unity (e.g., Hansen, Heaton, and Li (2008), Malloy, Moskowitz, and

Vissing-Jorgensen (2009)). Malloy et. al., conjecture that risk-aversion estimates identified
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from a cross-section of returns are unlikely to be greatly affected by the value of the EIS.

To investigate this possibility in our setting, we repeated our estimation fixing ρ = 1. The

results are presented in Table A.1.

The results are somewhat sensitive to the weighting matrix used in the second step

estimation. For example, in an estimation of the representative agent version of the model

with ρ = 1 andW = IN , the relative risk aversion coeffi cient θ is estimated to be 20, much

lower than the value of almost 60 reached when ρ is freely estimated (Table 2). But when

W=G−1
T , the coeffi cient of relative risk aversion θ is estimated to be 60, precisely the same

value obtained when ρ is left unrestricted. In addition, the HJ distance is about the same

when ρ = 1, equal to 0.448 compared to 0.451 when ρ is unrestricted (the HJ distance is

slightly smaller when ρ = 1 because, when ρ is fixed, one fewer parameter is estimated,

reducing the AIC penalty). Thus, the results using W=G−1
T are largely supportive of the

conjecture of Malloy, Moskowitz, and Vissing-Jorgensen (2009). We note, however, that if

the model with ρ = 1 is misspecified, parameter estimates can be sensitive to the objective

function minimized, as we find here.

We find qualitatively similar results in an estimation of the representative stockholder

version of the model. In this case, when ρ = 1 and W = IN , the relative risk aversion

coeffi cient θ is estimated to be 20, the same value obtained when ρ is left unrestricted. This

is not surprising because the unrestricted value of ρ is already quite close to unity, equal to

0.9. On the other hand, whenW=G−1
T , θ is estimated to be 10, considerably smaller than

the value of 17 estimated when ρ is unrestricted with a point estimate of 0.68. But the HJ

distance is 0.469 when ρ = 1, only slightly larger than the value of 0.463 found when ρ is

unrestricted. We conclude that the model’s cross-sectional performance, as measured by the

HJ distance, is not sensitive to fixing the EIS at unity.

4.2 Forecasting the Aggregate Wealth Portfolio Rw,t+h with lnWt−
lnCt

We investigate the implications of the findings above for forecastability of the multi-horizon

excess return to the aggregate wealth portfolio, Rw. To do so, consider the accumulation

equation for aggregate wealth, written1

Wt+1 = Rw,t+1(Wt − Ct). (18)

1Labor income does not appear explicitly in this equation because of the assumption that
the market value of tradable human capital is included in aggregate wealth.
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If the consumption-aggregate wealth ratio is stationary, the budget constraint may be ap-

proximated by taking a first-order Taylor expansion of the equation following Campbell and

Mankiw (1989). The resulting approximation gives

∆ lnWt+1 ≈ k + lnRw,t+1 + (1− 1/ρw)(lnCt − lnWt), (19)

where ρw ≡ 1−exp (c− w), and k is a constant that plays no role in the forecasting analysis.

Solving this difference equation forward, imposing the condition that limi→∞ ρ
i
w(logCt+i −

logWt+i) = 0 and taking expectations, the log wealth-consumption ratio may be written

(ignoring constants):

lnWt − lnCt =

∞∑
i=1

ρiw(∆ lnCt+i − lnRw,t+i). (20)

Under rational expectations, the expression above should hold ex-ante as well as ex-post :

lnWt − lnCt = Et

∞∑
i=1

ρiw(∆ lnCt+i − lnRw,t+i). (21)

whereEt is the expectation operator conditional on information available at time t. Equation

(??) implies that the log consumption-wealth ratio forecasts future returns to aggregate

wealth, or future consumption growth, or some combination of the two. Multiply both sides

of (??) by (lnWt − lnCt)−E (lnWt − lnCt) and take unconditional expectations to obtain

Var (lnWt − lnCt) = Cov

(
(lnWt − lnCt),

∞∑
j=0

ρjw∆ lnCt+1+j

)
(22)

−Cov
(

(lnWt − lnCt),
∞∑
j=0

ρjw lnRw,t+1+j

)
.

The above expression says that the variance of the log wealth-consumption ratio must be

attributable to its covariance with future consumption growth minus its covariance with

future returns to aggregate wealth.

It is straightforward to investigate the implications of the estimated V/C functions for the

forecasting identities above using the equilibrium relation between the wealth-consumption

ratio and the continuation value-consumption ratio implied by EZW preferences:

Wt

Ct
=

1

(1− β)

(
Vt
Ct

)1−ρ

.

We use the relation above, along with the estimated continuation value-consumption ratio

functions, to investigate how the variance of lnCt − lnWt is related to future returns and

future consumption growth.
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Table A.2 presents forecasts of lnRw,t+H and ∆ lnCt+H by lnWt − lnCt for various

horizons H. Also reported are empirical counterparts to the variance decomposition (??)

computed by truncating the infinite sums at 20 quarters and multiplying by 100 to express

as a percent:

100× Cov
(

lnWt − lnCt,
∑20

j=0 ρ
j
w∆ lnCt+1+j

)
Var (lnWt − lnCt)

−100× Cov
(

lnWt − lnCt,
∑20

j=0 ρ
j
w lnRw,t+1+j

)
Var (lnWt − lnCt)

.

The table shows that lnWt− lnCt forecasts future returns to aggregate wealth, but is weakly

related to consumption growth over long horizons. A high wealth-consumption ratio is

indicative of lower future returns to aggregate wealth, and not of higher future consumption

growth. Moreover, the covariance of lnWt − lnCt with future returns accounts for 107%

of the variance of lnWt − lnCt.
2 These results are reminiscent of the behavior of the log

price-dividend ratio for the aggregate stock market.3

2A high wealth-consumption ratio forecasts a slightly lower discounted value of future consumption

growth, so covariance with future returns has to account for more than 100% of the variance of lnWt− lnCt.
3For a recent review of this evidence see Cochrane (2011), Ludvigson (2012).
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Table A.1

Preference Parameter Estimates, EIS=1

2nd Step Estimation β θ HJ Dist

Aggregate Consumption

W = I 0.985 20 –

W = G−1
T 0.985 60 0.448

Stockholder Consumption

W = I 0.990 20.00 –

W = G−1
T 0.999 10.0 0.469

Notes: The table reports second-step estimates of preference parameters, when the EIS = ρ−1 is fixed

at one. β is the subjective time discount factor,and θ is the coeffi cient of relative risk aversion. Second-step

estimates are obtained by minimizing the GMM criterion with eitherW = I or withW = G−1
T , where in

both cases xt= 1N , an N × 1 vector of ones. The sample is 1952:Q1-2005:Q1.
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Table A.2

Dynamics of Estimated Aggregate Wealth-Consumption Ratio

lnRW,t→t+H = a+ b [lnWt − lnCt] ∆ lnCt→t+H = a+ b [lnWt − lnCt]

Horizon H

(quarters)
b t-stat R

2
b t-stat R

2

2 -0.0003 -7.2706 0.1223 0.0001 3.0292 0.0180

4 -0.0007 -8.4251 0.2070 0.0000 0.2397 0.0002

8 -0.0008 -8.8560 0.1260 -0.0001 -1.0239 0.0021

16 -0.0007 -6.1469 0.0430 0.0001 0.6498 0.0005

Variance decomposition of lnWt − lnCt

RW C

106.87 -5.26

Notes: The top panel reports results from regressions of the estimated aggregate wealth return RW

(left) and aggregate consumption growth (right) from t to t+H on the estimated log aggregate wealth-

consumption ratio. The bottom panel reports the results of a variance decomposition of the estimated log

wealth-consumption ratio. The column labeled “RW” in the variance decomposition denotes
−100×Cov(lnWt−lnCt,

∑20
j=0 ρ

j
w lnRw,t+1+j)

Var(lnWt−lnCt)
. The column lableled “C”in the variance decomposition stands for

100×Cov(lnWt−lnCt,
∑20
j=0 ρ

j
w∆ lnCt+1+j)

Var(lnWt−lnCt)
. The results reported are for estimates on aggregate consumption,

W = G−1
T . The sample is 1952:Q1-2005:Q1.
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