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Appendix to �Investor Information, Long-Run Risk, and the Term Structure of

Equity�

This document is an on-line Appendix for the paper entitled �Investor Information, Long-

Run Risk, and the Term Structure of Equity.� The Appendix discusses (i) �nite sample

properties of VARMA versus ARMA representations for consumption and dividend growth,

(ii) identi�cation of parameters of the true data generating process, (iii) the innovations

representation of the limited information problem, (iv) implications for the term structure of

equity under full information when the true data generating process is a pair of ARMA(1,1)

processes, (v) the numerical solution procedure (vi) estimates of VARMA and ARMA cash-

�ow processes using historical data.

In this document we refer to the true data generating process given in the text as

�ct+1 = �c + xc;t|{z}
LR risk

+ �"c;t+1| {z }
SR risk

(1)

�dt+1 = �d + �xxc;t + �c�"c;t+1 + �d�"d;t+1 (2)

xc;t = �xc;t�1 + �xc�"xc;t (3)

"c;t+1; "d;t+1; "xc;t � N:i:i:d (0; 1) : (4)

1 VARMA versus ARMA Representations

The dynamic system has a multivariate Wold representation given as a �rst-order vector

autoregressive-moving average representation (V ARMA (1; 1)) taking the form,"
�ct+1

�dt+1

#
=

"
�c (1� �)

�d (1� �)

#
+

"
� 0

0 �

#"
�ct

�dt

#
+

"
1 0

0 1

#"
vVc;t+1

vVd;t+1

#
�
"
bcc bcd

bdc bdd

#
| {z }

b

"
vVc;t

vVd;t

#
:

(5)

We assume that agents instead estimate the best �tting univariate Wold representations for

consumption and dividend growth. Given the true data generating process, univariate Wold

representations for �ct; and �dt can be written as a pair of �rst-order autoregressive-moving

average (ARMA(1; 1)) processes:

�ct+1 = �c (1� �) + ��ct + vAc;t+1 � bcv
A
c;t (6)

�dt+1 = �d (1� �) + ��dt + vAd;t+1 � bdv
A
d;t: (7)
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To understand why we assume agents with limited information estimate the best �tting

univariate processes rather than the multivariate counterpart, we need to discuss the tradeo¤

between forecast bias and forecast variance. Denote the predicted values of consumption

and dividend growth formed using the univariate Wold representations as �bcARMA
t+1 ; and

�bdARMA
t+1 , respectively. Likewise, denote the predicted values of consumption and dividend

growth formed using the multivariate Wold process �bcV ARMA
t+1 ; and �bdV ARMA

t+1 , respectively.

The multivariate Wold representation for the dynamic system (1)-(3) is a V ARMA (1; 1),

which has 11 free parameters. By contrast, each univariate process has four free parameters.

Given that the true data generating process has a V ARMA representation, �bcARMA
t+1 ; and

�bdARMA
t+1 will be biased predictors of consumption and dividend growth, while �bcV ARMA

t+1 ;

and �bdV ARMA
t+1 will be unbiased. However, estimation error for the 7 additional parameters

of the VARMA process will increase the variance of �bcV ARMA
t+1 ; and �bdV ARMA

t+1 over that of

�bcARMA
t+1 ; and �bdARMA

t+1 . As a consequence, agents face a choice between the unbiased but

noisy predictors �bcV ARMA
t+1 and �bdV ARMA

t+1 and the biased but less-noisy predictors �bcARMA
t+1 ;

and �bdARMA
t+1 : If the sample size and o¤-diagonal of the b matrix in (5) are su¢ ciently small,

the noise from estimating the additional V ARMA parameters can out-weigh the gains from

eliminating the bias, implying that better forecasts are obtained using the more parsimonious

univariate ARMA speci�cations. This occurs because the o¤-diagonal elements of the b

matrix, bcd and bdc, are close to zero, so the system behaves approximately as a pair of

ARMA (1; 1) processes.

Indeed, we �nd that this is the situation here, both in the model and in the data. Under

the true data-generating process (1)-(3), the parameters bcd and bdc are small in absolute

value in the benchmark calibration discussed below, equal to 0.004 and -0.08, respectively.

These parameters are also small when estimated using historical data, where the restriction

bcd = bdc = 0 cannot be statistically rejected at the �ve percent level in monthly, quarterly or

annual data. This suggests that the V ARMA system is well approximated by two univariate

ARMA processes.

A more direct way to study the bias-variance tradeo¤ is to compare forecasts explicitly.

Table A1 shows the results of short-sample simulations of the data generating process (1)-

(4). We simulate 500 samples of the size currently available in historical data and use

these samples to generate a set of recursive, out-of-sample forecasts of consumption and

dividend growth. The data generating process is calibrated using the benchmark calibration

discussed below. The table reports the di¤erence, in percent, between the root mean squared
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forecast error (RMSE) of the ARMA estimation and the V ARMA estimation, averaged

across the 500 samples. Thus, a negative number indicates that the ARMA estimation has

lower forecast error. As Table A1 shows, the estimated ARMA processes routinely produce

forecasts that are superior to those of the estimated V ARMA process. This result is robust

across a range of initial estimation periods and forecast horizons. Thus, even when the true

data-generating process is given by the dynamic system (1)-(4), the best-�tting univariate

processes produce more accurate forecasts of consumption and dividend growth than does

the true multivariate Wold representation.

Table A2 shows that a similar result holds qualitatively in historical data. We obtain an-

nual, quarterly and monthly data on consumption and dividends and estimate ARMA (1; 1)

and V ARMA (1; 1) processes. As in Table A1, the table reports the di¤erence in RMSE

between the ARMA forecast and the V ARMA forecast. Over a range of di¤erent data

frequencies, forecast horizons, and initial estimation samples, the ARMA forecasts are more

often than not superior to the V ARMA forecasts, sometimes sizeably so. For example, in

quarterly data, the ARMA consumption growth forecast error is almost 8 percent smaller

than the counterpart based on the V ARMA speci�cation. Unlike the ARMA models, there

is no case in which the V ARMA model produces a superior forecast for both consumption

and dividend growth simultaneously.

These results show that, in samples of the size currently available, the additional pa-

rameters of the V ARMA speci�cation cannot be estimated accurately enough to improve

forecasts over a best-�tting univariate model. Indeed, the opposite holds: attempting to

estimate the larger system worsens forecasts. Thus, even if the dynamic system (1)-(4) gen-

erates the data, it would be rational for agents faced with incomplete information to use

the more parsimonious univariate speci�cations for forecasting consumption and dividend

growth, when faced with the signal extraction problem of uncovering long-run consumption

risk from observable data.

2 Identi�cation

We assume that the general data generating process that agents with limited information

would like to estimate takes the form
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�ct+1 = �c + xc;t|{z}
LR risk

+ �"c;t+1| {z }
SR risk

(8)

�dt+1 = �d + xd;t + �c�"c;t+1 + �d�"d;t+1 (9)

xc;t = �xc;t�1 + �xc�"xc;t (10)

xd;t = �dxd;t�1 + �xd�"xd;t (11)

("c;t+1; "d;t+1; "xc;t; "xd;t) � N:i:i:d (0;
) (12)

Market participants could in principal obtain a consistent estimate of these parameters si-

multaneously with estimates of xc;t and xd;t, by writing the dynamic system above in state

space form and applying maximum likelihood to the history of consumption and dividend

data. Agents could use the Kalman �lter to form an estimate of the unobservable conditional

means xc;t and xd;t, by sequentially updating a linear projection on the basis of consumption

and dividend data observed through date t.

This system is not identi�ed, however. The system (8)-(12) has 14 unknown parameters

(including ten unknown parameters in 
). Estimation of (5) identi�es 11 parameters, three

short of what�s needed for exact identi�cation. That is, given a su¢ ciently long sample of

data on consumption and dividend growth, the parameters of the dynamic system (8)-(12)

can be observed in certain combinations as the estimates �, bcc,:::, bdd and the variance-

covariance matrix of vc;t+1 and vd;t+1, but this information is not enough to separately identify

the parameters of (8)-(12). The true data generating process (1)-(3) is a special case of this

system that imposes the restrictions xd;t = �xxc;t; requiring �d = �; �xd = �x�xc; "xd;t = "xc;t;

x0 = xd0 = 0, and the shocks to (8)-(10) to be uncorrelated.

3 Innovations Representation

The ARMA(1; 1) processes may be recast in terms of the following pair of innovations

representations:

�ct+1 = �c + bxc;t + vAc;t+1 (13)bxc;t+1 = �bxc;t +KvAc;t+1 (14)

�dt+1 = �d + bxd;t + vAd;t+1 (15)bxd;t+1 = �bxd;t +KdvAd;t+1; (16)
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where K � � � bc and Kd � � � bd: Here, bxc;t and bxd;t denote optimal linear forecasts
based on the history of consumption and dividend data separately, i.e., bxc;t � bE (xc;tjztc),
and bxd;t � bE (xd;tjztd), where ztc � (�ct;�ct�1; :::;�c1)0 and ztd � (�dt;�dt�1; :::;�d1)0 :
The optimal forecasts are functions of the observable ARMA parameters and innovations:

bxc;t = ���c + ��ct � bcv
A
c;tbxd;t = ���d + ��dt � bdv
A
d;t:

4 ARMA(1,1) and Insurance�Full Information

Suppose the decision maker has full information and the true data generating process follows

a pair of ARMA(1,1)s:

�ct+1 = � (1� �) + ��ct + vAc;t+1 � bcv
A
c;t; (17)

�dt+1 = � (1� �) + ��dt + vAd;t+1 � bdv
A
d;t: (18)

The two ARMA(1,1) processes above can be rewritten in the following equivalent way:

�ct+1 = �+ xAc;t + vAc;t+1 (19)

�dt+1 = �+ xAd;t + vAd;t+1 (20)

xAc;t+1 = �xAc;t + (�� bc)| {z }
KA
c

vAc;t+1 (21)

xAd;t+1 = �xAd;t + (�� bd)| {z }
KA
d

vAd;t+1 (22)

�
vAc;t+1; v

A
d;t+1

�
� N:i:i:d (0;
A) ; (23)

where


A =

"
�2vc;A �vc;A�vd;A�vcvd;A

�vc;A�vd;A�vcvd;A �2vd;A

#
:

In this setting, unlike in the model of the text, the shocks to the short-run (unforecastable)

and long-run (forecastable) components are perfectly correlated. The SDF is driven just by

one risk factor, i.e., vAc;t+1:

mt+1 � Et[mt+1] = �
�

 + �c


 � 1= 
1� ��c

KA
c

�
| {z }

>0

vAc;t+1: (24)
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With a single shock in each univariate process, how do we separate out components of

the market risk premium attributable to long- versus short-run movements in consump-

tion/dividend growth? This can be accomplished using the approximate return decomposi-

tion of (Campbell (1991)), which shows that the unexpected log stock return is associated

with changes in expectations of future dividends or expectations of future real returns:

rt+1 � Et [rt+1] = (Et+1 � Et)
1X
j=0

'j�dt+1+j � (Et+1 � Et)

1X
j=1

'j�rt+1+j;

where ' � 1=
�
1 + exp

�
d� p

��
; and d� p is the mean log dividend-price ratio. The �rst

sum begins at j = 0 while the second begins at j = 1, implying that return surprises may

be written as the sum of three terms:

rt+1�Et [rt+1] = �dt+1 � Et�dt+1| {z }
cash-�ow surprise

+(Et+1 � Et)
1X
j=1

'j�dt+1+j| {z }
news about future cash-�ows

� (Et+1 � Et)
1X
j=1

'j�rt+1+j| {z }
news about future returns

:

The �rst term above is today�s dividend shock (short-run cash �ow surprise); it is non-

zero even when dividend growth is i.i.d. The second term above represents revisions in

expectations, or �news,�of future dividend growth rates. The third term above represents

news about future returns. The last two terms are non-zero only if dividend growth and

returns are not i.i.d., that is only if there is persistence in these variables. In the models of

this paper, the last two terms are non-zero only if consumption growth has some persistence:

persistence in consumption growth directly a¤ects cash-�ow news in the middle term on the

right-hand-side, and indirectly a¤ects return news through the risk-free rate when the EIS

is non-zero. Thus we can decompose the market risk premium into components that would

be present even if consumption growth were i.i.d. (movements attributable to the current

cash-�ow surprise) and to components present only if there is persistence in consumption

growth (movements attributable to news about future growth rates and returns). For the

ARMA(1,1) case considered in this subsection, the market return innovation (surprise) may

be decomposed into components attributable to the cash-�ow surprise and news variation:

rexm;t+1 � Et[r
ex
m;t+1] = vAd;t+1| {z }

cash-�ow surprise

(25)

+�d
1

1� ��d
KA
c

�
KA
d

KA
c

vAd;t+1 �
1

 
vAc;t+1

�
| {z }

news variation

: (26)
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We can use this decomposition to compute the component of the market risk premium that

is attributable to the current cash-�ow surprise and news components, by computing the

covariance of each component (25) and (26) with the SDF. The covariance of mt+1 with

(25) gives component of the risk premium driven by exposure to purely short-run shocks,

while the covariance of mt+1 with (26) gives the component of the risk premium driven by

exposure to long-run consumption risk that drives the news components.

The market risk premium is E[rexm;t+1] = E[Et[r
ex
m;t+1]] = E[�covt(rexm;t+1;mt+1)]. Since

E[rexm;t+1] � �covt(rexm;t+1;mt+1), we can write this covariance as

E[rexm;t+1] �
�

 � 1=	
1� ��c

�cK
A
c + 


�
�vc;vd;A�vc;A�vd;A| {z }

E[rex1;t+1]=�covt(vAd;t+1;mt+1)

(27)

+
�d

1� ��d
(�vc;vd;A

KA
d �vd;A

KA
c �vc;A

� 1

 
)

�

 � 1=	
1� ��c

�c +



KA
c

�
(KA

c �vc;A)
2| {z }

�d
1��
1���d

S=� �d
1���d

covt(
KA
d

KAc
vAd;t+1�

1
 
vAc;t+1;mt+1)

: (28)

The term (27) is the component of the risk premium attributable to the current cash-�ow

surprise; note that the correlation �vc;vd;A must be non-zero in order for the dividend shock

to be priced. The term (28) is the component attributable to movements in expected con-

sumption growth; that is, attributable to persistence in consumption growth.

The term (28) varies only if expected consumption growth varies. This can be seen by

focusing on the multiplicative term (�vc;vd;A
KA
d �vd;A

KA
c �vc;A

� 1
 
); which, if zero, implies the entire term

is zero. The �rst part of this term, �vc;vd;A
KA
d �vd;A

KA
c �vc;A

� �A; is a measure of dividends�exposure

to movements in expected consumption growth. To see this, consider the projection of the

persistent component of dividend growth xAd;t onto the persistent component of consumption

growth xAc;t:

xAd;t = �xAd jxAc � x
A
c;t + residt;

where residt is a residual and �xAd jxAc is the coe¢ cient in this projection. For the full infor-

mation model (17)-(18), �xAd jxAc =
COV (xAd ;x

A
c )

V (xAc )
. But since xAd and x

A
c are two AR(1) processes

with the same persistence, this collapses to:

�xAd jxAc =
Cov(KA

d v
A
d ; K

A
c v

A
c )

V (KA
c v

A
c )

= �vc;vd;A
KA
d std(v

A
d )

KA
c std(v

A
c )
= �Ax :

Recalling that the correlation �vc;vd;A must be non-zero in order for the persistent component

of consumption growth to be priced into the dividend claim, it is clear that the exposure
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of dividend growth to expected consumption growth is governed by �vc;vd;A
KA
d �vd;A

KA
c �vc;A

. The

exposure of dividend growth to expected returns is governed by the term 1= : the lower

is  , the more the expected risk-free rate increases in response to an increase in expected

consumption growth. Both terms are present only when expected consumption growth varies.

The decomposition above shows that short-run shocks are always a source of risk in this

case. According to (27), as long as dividends are positively exposed to consumption risk

(i.e., under the parameter restriction �vc;vd;A > 0), dividends are always risky with respect

to the short-run consumption shock vAc;t+1. This component of the risk premium is always

positive.

By contrast, according to (28), dividends are risky with respect to persistent movements

in consumption (KA
c v

A
c;t+1) if and only if �

A
x � 1

 
> 0, i.e., if the revision of expected future

dividends growth (KA
d v

A
d;t+1) is big enough to overcome the insurance e¤ect coming from the

expected risk-free rate channel. In this case S > 0, however. When the long-run component

of consumption growth is a source of risk�that is, adds to the risk premium rather than

subtracts from it�the term structure slopes up. Thus this model, like the full information

counterpart in the main text, implies that a downward sloping term structure is possible if

and only if persistent consumption shocks are a source of insurance rather than risk.

Finally, note that equations (27)�(28) imply the following decomposition of the market

equity premium under limited information:

Et(r
ex
d;t+1) + :5Vt(r

ex
d;t+1) = Et

h
r
(1)ex
t+1 + :5Vt

�
r
(1)ex
t+1

�i
+ �d

1� �

1� �d�
S: (29)

This equation shows that, for any given excess return on the one-period strip, any parame-

trization of cash �ows that delivers a downward sloping term structure S < 0 will make it

more di¢ cult to match evidence for a large equity premium.

5 Numerical Solution

We describe our numerical solution procedure for the full information speci�cations and

the univariate signal extraction case. A description of the system signal extraction case is

directly analogous and is omitted for brevity.

5.1 Model Solution in Full Information

Under Full Information, there is a single state variable, xt. We discretize and bound its

support by forming a grid of K points fx1; x2; ... xKg on the interval [-5V(x) +5V(x)]. We
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choose K to be odd so that the unconditional mean of the state x is the middle point of our

grid.

We discretize also the distribution of a standardized normal random variable by forming a

grid of equidistant points f�1; �2; ... �Ig over the interval [-5 +5], imposing:

pi =
e��

2
i =2PI

1 e
��2i =2

; i = 1; 2; :::I

Again, we choose I to be odd so that �(I�1)=2+1 = 0.

Rewrite the Euler equations for the price-consumption ratio as:

Wc(xk) =

 
IX
i=1

IX
j=1

��e(1�
)(�+xk+��i)[1 +Wc(x
0
jjk)]

�pipj

! 1
�

(30)

x0jjk = �xk + �'x�j

k = 1; 2; :::; K;

where Wc(xk) is the price-consumption ratio as a function of x in state k. The functional in

(30) can be solved by noting that its right hand side is a contraction and treating Wc(x) as

the �xed point of Wc;n+1(x) = T (Wc;n(x)).

Approximate Wc;n by a third order polynomial in x, and impose:

Wc;n(x
0
jjk) = [1 x

0
jjk (x

0
jjk)

2 (x0jjk)
3][�1;n �2;n �3;n �4;n]

0

where the operator is initialized with an initial guess on the parameters �0. ComputeWc;1(xk)

for every xk 2 fx1; x2; ... xKg, and stack the resulting values in the vector
�!
W c;1 2 RK . Using

least squares the guesses are updated: �1 = (�
0�)�1�0

�!
W c;1, where:

� =

266666664

1 x1 (x1)
2 (x1)

3

1 x2 (x2)
2 (x2)

3

...
...

...
...

1 xk (xk)
2 (xk)

3

377777775
We repeat these steps until convergence (tolerance level = .1e-5).

Once Wc(x) = [1 x x
2 x3]� has been found, the stochastic discount factor has the following

expression:

Mk;i;j = ��e�
(�+xk+��i)
�
1 +Wc(�xk + �'x�j)

Wc(xk)

���1
9



price-dividend ratios are found in a similar way by iterating until convergence the following

recursion:

Wd;n+1(xk) =
IX
i=1

IX
j=1

IX
l=1

��e�
(�+xk+��c;i)

 
1 +Wc(x

0
jjk)

Wc(xk)

!��1

�

�[1 +Wd;n(x
0
jjk)]e

(�+�xxk+�c��c;i+�'d�d;l)pipjpl (31)

Wd;n(x
0
jjk) = [1 x0jjk (x

0
jjk)

2 (x0jjk)
3]�d;n

The coe¢ cients of the polynomial expansion for the price-dividends are updated by the fol-

lowing OLS formula: �d;n+1 = (�
0�)�1�0

�!
W d;n+1.

For n!1, �d;n+1 ! �d = (�
0�)�1�0

�!
W d.

To solve for zero coupon equity price-dividend Ratios note the following equivalence

holds:

Wd;t =
1X
n=1

W n
d;t (32)

where

W 0
d;t � 1

W n
d;t = Et

�
emt+1+�dt+1W n�1

d;t+1

�
; n = 1; 2; :::

Implement the following recursion across maturities:

W n
d (xk) =

IX
i=1

IX
j=1

IX
l=1

��e�
(�+xk+��i)

 
1 +Wc(x

0
jjk)

Wc(xk)

!��1

�

�[W n�1
d (x0jjk)]e

(�+�xxk+�c��i+�'d�l)pipjpl (33)

where

k = 1; 2; :::; K

W n�1
d (x0jjk) = [1 x0jjk (x

0
jjk)

2 (x0jjk)
3][�n�11 �n�12 �n�13 �n�14 ]0

�n�1 = (�0�)�1�0
�!
W n�1

d n = 2; 3; ::::

�0 � [1 0 0 0]0

lim
n!1

nX
j=1

�n�1 = �d
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This amounts to a sequence of quadrature problems that have to be solved recursively since

the price of the asset with maturity n depends on the price of the asset with maturity n� 1.

5.2 Model Solution in Limited Information

In Limited Information, the Price-Consumption Ratio and the stochastic discount factor

depend just on one relevant state: bx, here denoted c�c. We discretize and bound its support
by forming a grid of K points fc�c1; c�c2; ... c�cKg on the interval [-5V (c�c) +5V (c�c)]. We
choose K to be odd so that the unconditional mean of the state c�c is the middle point of
our grid, c�ct?vc;t+1.
The Euler equation for the Price-Consumption ratio is:

Wc(c�ck) =

 
IX
j=1

��e(1�
)(�+
c�ck+�vc�j)[1 +Wc(c�c0jjk)]�pj

! 1
�

(34)

wherec�c0jjk = �d�ck + (�� bc)�vc�j

solved by iterating until convergence the following recursion:

Wc;n(c�ck) =

 
IX
j=1

��e(1�
)(�+
c�ck+�vc�j)[1 +Wc;n�1(c�c0jjk)]�pj

! 1
�

n = 1; 2; :::

where the function is interpolated by a third order polynomial in c�c such that:
Wc;n�1(x

0
jjk) = [1 c�c0jjk (c�c0jjk)2 (c�c0jjk)3][�1;n�1 �2;n�1 �3;n�1 �4;n�1]0
�n = (�0�)�1�0

�!
W c;n n = 1, 2, 3,...

where

� =

266666664

1 c�c1 (c�c1)2 (c�c1)3
1 c�c2 (c�c2)2 (c�c2)3
...

...
...

...

1 c�ck (c�ck)2 (c�ck)3

377777775
�0 : initial guess
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The price-dividend ratio is a function of the state variable bxd � c�d and the shock vd:
"
vc;t+1

vd;t+1

#
� i:i:d:N

 "
0

0

#
;

"
�2vc �vc;cd

�vc;vd �v2d

#!
and" c�cc�d

#
� N

 "
0

0

#
;

"
�2c�c �c�c;c�d
�c�c;c�d �2c�d

#!

� A grid of combinations (c�dgjk;c�ck) is stacked in a matrix S with dimension (K�G)�2:

S =

26666666666664

c�c1 c�d1j1c�c1 c�d2j1
...

...c�c1 c�dgj1c�c2 c�d1j2
...

...c�cK c�dgjK

37777777777775
The recursion used to �nd the price-dividend ratio is given by:

Wd;n(c�cs; c�ds) =
IX
j=1

IX
i=1

��e�
(�+
c�cs+�vc�j)

 
1 + Vc(c�c0jjs)
Vc(c�cs)

!��1

�

�[1 +Wd;n�1(c�c0jjs; c�d0ijs)]e�+c�ds+�vd�ipij
(c�cs; c�ds) = [Ss;1Ss;2]

s = 1; 2; :::; K �G

The price-dividend ratio is interpolated as above by a quadratic polynomial in the two

12



states:

Wd;n�1(c�cs; c�ds) = [1 c�c0jjk c�d0ijk (c�c0jjk)2 (c�d0ijk)2 c�c0jjkc�d0ijk]�
�[�d1;n�1 �d2;n�1 �d3;n�1 �d4;n�1 �d5;n�1 �d6;n�1]0

�dn = (�d
0
�d)�1�d

0�!
W d;n

n = 1; 2; 3; :::

where

�d =

2664
1 S1;1 S1;2 S21;1 S21;2 S1;1S1;2
...

...
...

...
...

...

1 SG�K;1 SG�K;2 S2G�K;1 S2G�K;2 SG�K;1SG�K;2

3775
�0 : initial guess

For zero coupon equity price-dividends, we implement the following recursion:

W n
d (c�cs; c�ds) =

IX
j=1

IX
i=1

��e�
(�+
c�cs+�vc�j)

 
1 + Vc(c�c0jjs)
Vc(c�cs)

!��1

� (35)

�W n�1
d (c�c0jjs; c�d0ijs)e�+c�ds+�vd�ipij

W n�1
d (c�c0jjs; c�d0ijs) = [1 c�c0jjk c�d0ijk (c�c0jjk)2 (c�d0ijk)2 c�c0jjkc�d0ijk]�

�[�n�11 �n�12 �n�13 �n�14 �n�15 �n�16 ]0

�nd = (�d
0
�d)�1�d

0�!
W n

d

n = 1; 2; 3; :::

�0d = [1 0 0 0 0 0]:
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Table A1

ARMA vs VARMA: Short-sample Simulations

Out of Sample RMSE

Is = 100% Is = 75% Is = 50%

�c �d �c �d �c �d

h = 1 -.09 -.54 -.70 -.69 -1.1 -.54

h = 6 -.81 -.72 -.00 -.52 -1.2 -1.2

h = 12 -1.1 -1.0 -.12 -.40 -.60 -.79

h = 24 -1.0 -.00 -.31 -.00 -.30 -.51

Notes: The tables reports root-mean-squared errors (RMSE) of out-of-sample forecasts for univariate

ARMA and multivariate VARMA models. We simulate 500 independent samples of monthly consumption

and dividends growth using the calibration reported in �gure 3. N = 576 is the total number of observations

of monthly consumption and dividends growth. In each sample, we recursively estimate by maximum

likelihood the parameters of the ARMA and the VARMA models and compute the h-period ahead forecast

errors for consumption and dividends growth. Is denotes the initial sample size (in percent of the total sample

size N). The table reports the percentage relative di¤erence� averaged across samples� in the RMSE of the

ARMA and VARMA models for consumption and dividend growth (a negative number indicates that the

ARMA model produces a superior forecast to the VARMA model).
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Table A2

ARMA vs. VARMA: US Data

Out of Sample RMSE

Freq. N h Is = 75% Is = 50%

�c �d �c �d

Annual 77 1 �1:4 �2:2 �:30 3.3

5 �:12 �1:5 �:61 �:90

Quarterly 235 1 �2:4 �:43 �7:7 :30

5 �5:5 �:82 �3:4 �:11

Monthly 576 1 �:30 �:12 :61 �:50

5 �:61 �:15 �:52 �:61

Notes: The table reports h-period out-of-sample root-mean-squared forecast errors (RMSE) for univari-

ate ARMA models and multivariate VARMA models using consumption and dividend data measured at

di¤erent frequencies. N denotes the number of observations and Is is the initial sample in the recursive

estimation. The table reports the percentage relative di¤erence� averaged across samples� in the RMSE of

the ARMA and VARMA models for consumption and dividend growth (a negative number indicates that

the ARMA model produces a superior forecast to the VARMA model).

6 Estimation of ARMA and VARMA processes

This section presents estimates of the VARMA and ARMA cash-�ow processes using histor-

ical data on consumption and dividends. It should be noted that, choosing the parameters

of the incomplete information process by estimating them does not allow us to compare that

speci�cation to the full information version because the latter isn�t identi�ed from estimates

of either the VARMA or ARMA (see above). Thus, it should be understood that these

parameters correspond to a model where the true data generating process is the ARMA or

VARMA, and there is no information problem.

The parameters are estimated for two samples, with and without the Great Recession

period (2009-2012). We then plug the estimated parameters into formulas for the term
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spread and equity premium implied by a model where the true cash �ow process is either the

VARMA or ARMA process. Table A4 below reports the estimates and the implied values

for the term spread of equity and the equity premium. The equity term structure spread

is negative and the equity premium is sizeable in the ARMA LI model. Speci�cally, in the

whole sample 1931-2012, both the annual equity premium and the spread have an absolute

value of 3% using estimated parameter values. From the derivations above, we know that

these estimated parameters imply that the cash-�owmodel must be one of long-run insurance

rather than long-run risk.

In the bottom portion of Table A4, we present the asset pricing implications of the

VARMA model estimated with and without the Great Recession data. For each set of

estimated parameters, we also report the asset pricing implications of our model when we

zero-out the �o¤-diagonal�Kalman-gains, Kcd = Kdc = 0. We note three facts. First, under

all of our VARMA estimates, the equity term structure spread is negative, as in the ARMA

model. Second, the o¤-diagonal Kalman-gains are close to zero and statistically insigni�cant.

When all other parameters are kept constant and the condition Kcd = Kdc = 0 is imposed,

the equity term structure tends to be more downward sloping. In the VARMAmodel, similar

to full information, a more negative term spread comes at the cost of having a lower equity

premium. Since in the VARMA estimation of the model there is a lower correlation between

�c;t and �d;t, the short-run risk in these speci�cations (even those with the o¤ diagonal

elements zeroed out) is lower and the overall equity premium is not as high as under the

ARMA model.
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Table A4

Sample 	 
 b� bKcc
bKdd

bKcd
bKdc b�vc b�vd b�vc;vd EP S RF

ARMA(1,1)

1931-08 1.8 10 0.999 0.037 0.007 � � 1.8 7.9 0.55 2.49 -3.85 0.79

1931-12 1.8 10 0.999 0.040 0.009 � � 2.0 8.6 0.52 3.00 -2.96 0.58

VARMA(1,1)

1931-08 1.8 10 0.998 0.043 0.011 0.000 0.003 1.7 6.1 0.49 1.85 -0.67 0.87

1.8 10 0.998 0.043 0.011 0 0 1.7 6.1 0.49 1.52 -2.27 0.88

1931-12 1.8 10 0.999 0.026 0.004 0.000 0.005 1.7 6.1 0.45 1.23 -2.32 1.22

1.8 10 0.999 0.026 0.004 0 0 1.7 6.1 0.45 0.75 -7.45 1.23

Notes - The top portion of this table reports the point estimates of the parameters of two

ARMA(1,1) processes for consumption and dividends growth:

�ct = �(1� �) + ��ct�1 � (��Kcc)vc;t�1 + vc;t

�dt = �(1� �) + ��dt�1 � (��Kdd)vd;t�1 + vd;t:

The bottom portion of this table reports the point estimates of the parameters of a joint

VARMA(1,1) process for consumption and dividends growth:

�ct = �(1� �) + ��ct�1 � (��Kcc)vc;t�1 +Kcdvd;t + vc;t

�dt = �(1� �) + ��dt�1 � (��Kdd)vd;t�1 +Kdcvc;t + vd;t:

The standard deviations of the consumption and the dividend innovations are denoted as �vc and

�vd , respectively. The correlation of these innovations is �c;d. Real consumption is obtained from

the Bureau of Economic Analysis. Real dividends are from the R. Shiller data set, available online.

For each set of estimates, we report the model-implied equity premium (EP), average equity term

structure spread (S), and average risk-free rate (RF). For each VARMA(1,1) estimation, we also

report the asset pricing implications of our model when Kcd = Kdc = 0. When computing the asset

pricing statistics from our model, we impose � = 0:02 for both dividends and consumption across

all cases. The preference parameters are calibrated to the values reported in the table.
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