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This appendix provides additional content for the paper “Monetary Policy and Asset

Valuation.”Section I is a data appendix. Section II gives estimation details for cayMS.

Section III provides details of the Gibbs sampling algorithm. Section IV explains the most

likely regime sequence. Section V discusses estimation of the present discounted values

(PDVs) of future return premia. Section VI discusses variable selection for the Markov-

switching vector autoregression (MS-VAR) used to compute PDVs, while Section VII covers

estimation of the MS-VAR. Section VIII presents details of the Macro Block of the macro-

finance model, Section IX covers the Asset Pricing block, and Section X provides details

on the model solution. Section XI discusses details of the model estimation. Section XII

discusses details of the model-based PDVs. Section XIII discusses ZLB robustness checks.

Section XIV discusses the inflation target in the early- and late-dovish subperiods.

I. Data Appendix

This appendix describes the data used in this study.

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expen-

diture on nondurables and services, excluding shoes and clothing. The quarterly data are

seasonally adjusted at annual rates, in billions of chain-weighted 2005 dollars. The com-

ponents are chain-weighted together, and this series is scaled up so that the sample mean

matches the sample mean of total personal consumption expenditures. Our source is the

U.S. Department of Commerce, Bureau of Economic Analysis.

∗Citation format: Bianchi, Francesco, Martin Lettau, and Sydney Ludvigson, Internet Appendix for
”Monetary Policy and Asset Valuation,” Journal of Finance [DOI STRING]. Please note: Wiley is not
responsible for the content or functionality of any supporting information supplied by the authors. Any
queries (other than missing material) should be directed to the authors of the article.
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LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + employer contri-

butions for employee pensions and insurance - employee contributions for social insurance -

taxes. Taxes are defined as [ wages and salaries/(wages and salaries + proprietors’ income

with IVA and CCADJ + rental income + personal dividends + personal interest income)]

times personal current taxes, where IVA is inventory valuation and CCADJ is capital con-

sumption adjustments. The quarterly data are in current dollars. Our source is the Bureau

of Economic Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per-

capita disposable income. Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net worth in billions of current dollars, measured at the end of

the period. A break-down of net worth into its major components is given in the table below.

Stock market wealth includes direct household holdings, mutual fund holdings, holdings

of private and public pension plans, personal trusts, and insurance companies. Nonstock

wealth includes tangible/real estate wealth, nonstock financial assets (all deposits, open

market paper, U.S. Treasuries and agency securities, municipal securities, corporate and

foreign bonds and mortgages), and also includes ownership of privately traded companies

in noncorporate equity, and other. Subtracted off are liabilities, including mortgage loans

and loans made under home equity lines of credit and secured by junior liens, installment

consumer debt, and other. Wealth is measured at the end of the period. A timing convention

for wealth is needed because the level of consumption is a flow during the quarter rather

than a point-in-time estimate as is wealth (consumption data are time-averaged). If we

think of a given quarter’s consumption data as measuring spending at the beginning of the

quarter, then wealth for the quarter should be measured at the beginning of the period.

If we think of the consumption data as measuring spending at the end of the quarter,
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then wealth for the quarter should be measured at the end of the period. None of our

main findings discussed below (estimates of the cointegrating parameters, error-correction

specification, or permanent-transitory decomposition) are sensitive to this timing convention.

Given our finding that most of the variation in wealth is not associated with consumption,

this timing convention is conservative in that the use of end-of-period wealth produces a

higher contemporaneous correlation between consumption growth and wealth growth. Our

source is the Board of Governors of the Federal Reserve System. A complete description of

these data may be found at http://www.federalreserve.gov/releases/Z1/Current/.

CRSP PRICE-DIVIDEND RATIO

The stock price is measured using the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE.

The data are monthly. The stock market price is the price of a portfolio that does not

reinvest dividends. The CRSP data set consists of vwretx(t) = (Pt/Pt−1)− 1, the return on

a portfolio that does not pay dividends, and vwretdt = (Pt +Dt) /Pt − 1, the return on a

portfolio that does pay dividends. The stock price index we use is the price P x
t of a portfolio

that does not reinvest dividends, which can be computed iteratively as

P x
t+1 = P x

t (1 + vwretxt+1) ,

where P x
0 = 1. Dividends on this portfolio that does not reinvest are computed as

Dt = P x
t−1 (vwretdt − vwretxt) .

The above give monthly returns, dividends, and prices. The annual log return is the sum

of the 12 monthly log returns over the year. We create annual log dividend growth rates

by summing the log differences over the 12 months in the year: dt+12 − dt = dt+12 − dt+11 +

dt+11 − dt+10 + · · · + dt+1 − dt. The annual log price-dividend ratio is created by summing

dividends in levels over the year to obtain an annual dividend in levels, DA
t , where t denotes

a year in this context. The annual observation on P x
t is taken to be the last monthly price

3



observation of the year, PAx
t . The annual log price-dividend ratio is ln

(
PAx
t /DA

t

)
. Note

that this value for dividend growth is used only to compute the CRSP price-dividend ratio

on this hypothetical portfolio. When we investigate the behavior of stock market dividend

growth in the MS-VAR, we use actual dividend data from all firms on NYSE, NASDAQ,

and AMEX. See the data description for MS-VARs below.

FLOW OF FUNDS EQUITY PAYOUT, DIVIDENDS, PRICE

Flow of Funds payout is measured as “Net dividends plus net repurchases” and is com-

puted using the Flow of Funds Table F.103 (nonfinancial corporate business sector) by sub-

tracting Net Equity Issuance (FA103164103) from Net Dividends (FA106121075). We define

net repurchases to be repurchases net of share issuance, so net repurchases is the negative of

net equity issuance. Net dividends consists of payments in cash or other assets, excluding the

corporation’s own stock, made by corporations located in the United States and abroad to

stockholders who are U.S. residents. The payments are netted against dividends received by

U.S. corporations, thereby providing a measure of the dividends paid by U.S. corporations

to other sectors. The price used for Flow of Funds (FOF) price-dividend and price-payout

ratios is “Equity,” the flow of funds measure of equities (LM103164103).

PRICE DEFLATOR FOR CONSUMPTION AND ASSET WEALTH

The nominal after-tax labor income and wealth data are deflated by the personal con-

sumption expenditure chain-type deflator (2005=100), seasonally adjusted. In principle, one

would like a measure of the price deflator for total flow consumption. Since this variable is

unobservable, we use the total expenditure deflator as a proxy. Our source is the Bureau of

Economic Analysis.

DATA FOR MS-VAR TO ESTIMATE RISK PREMIA

The variables included in the MS-VAR for the equity characteristics portfolio data are:

(i) the momentum return spread, that is, the difference between the excess return of the

extreme winner (M10) portfolio and the excess return of the extreme loser (M1) portfolio;

(ii) the value return spread (S1), that is, the difference between the excess return of the
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small (size 1) high BM portfolio and the excess return of the small (size 1) low BM portfolio;

(iii) the value return spread (S2), that is, the difference between the excess return of the

size 2 high book-to-market (BM) portfolio and the excess return of the small size 2 low BM

portfolio; (iv) the momentum BM spread: the difference between the logarithm of the BM

ratio of the M10 and M1 portfolios; (v) the value BM spread (S1): the difference between the

logarithm of the BM ratio of the small (size quintile 1) high BM portfolio and the logarithm

of the BM ratio of the small (size 1) low BM portfolio; (vi) the value BM spread (S2): the

difference between the logarithm of the BM ratio of the size quintile 2 high BM portfolio

and the logarithm of the BM ratio of the size 2 low BM portfolio; (vii) the real federal funds

rate (FFR) (FFR minus inflation); (viii) the excess return on the small value portfolio. We

then use CRSP/Compustat to construct the BM ratios of the corresponding portfolios.

The MS-VAR specification for the market risk premium includes the following variables:

(i) the market excess return, computed as the difference in the CRSP value-weighted stock

market return (including dividend redistributions) and the three-month Treasury bill rate;

(ii) −cayMS; (iii) the small stock value spread (log-difference in the BM ratio of the S1 value

and S1 growth portfolio); (iv) the SMB factor from Fama and French; (v) the HML factor

from Fama and French. These variables are obtained from Kenneth French’s Dartmouth

webpage.

DATA FOR MODEL ESTIMATION

Inflation expectations are taken from the mean inflation forecasts of one-year-ahead in-

flation, provided by the University of Michigan Survey of Consumers. Our data sources

for output growth are the NIPA tables constructed by the Bureau of Economic Analysis

and the St. Louis Fed. Real GDP per capita is obtained by dividing nominal GDP (NIPA

1.1.5, line 1) by the GDP deflator (NIPA 1.1.4, line 1) and population. Population is mea-

sured as Civilian Non-institutional Population (CNP16OV) and downloaded from FRED,

a website maintained by the Federal Reserve Bank of St. Louis. Inflation is measured as

the quarter-to-quarter log-change of CPI. Both the CPI and the FFR series are downloaded
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from FRED. Expected inflation is the mean of the one-year-ahead expected inflation based

on the Michigan survey. All variables are annualized.

II. Computing cayMS

Let zt be a 3× 1 vector of data on ct, at, ỹt, and k leads and k lags of ∆at and ∆yt and

let Zt = (zt, zt−1, ...,z1) be a vector containing all observations obtained through date t. To

estimate the parameters of this stationary linear combination, we modify the standard fixed

coefficient dynamic least squares regression (DLS–Stock and Watson (1993)) regression to

allow for shifts in the intercept αξt :

ct = αξt + βaat + βyyt +
k∑

i=−k

ba,i∆at+i +
k∑

i=−k

by,i∆yt+i + σcεct , (IA1)

where εt ∼ N (0, 1) .1 The parameters of the econometric model include the cointegrating pa-

rameters and additional slope coefficients β = (βa, βy, b)
′, where b = (ba,−k, .., ba,k, by,−k, .., by,k)

′,

the two intercept values α1 and α2, the standard deviation of the residual σ, and the tran-

sition probabilities are contained in the matrix H.

We combine the estimation of changes in the mean of cayMS
t with an isomorphic model

for the monetary policy spread. Specifically, we assume that regime changes in the mean of

cayMS
t coincide with regime changes in the mean of the mps:

mpst = rξt + εrt , (IA2)

where εrt ∼ N (0, σ2
r). Importantly, unlike cayMS

t , mpst is an observed variable. Thus, in

this case we only need to conduct inference about the Markov-switching intercept coefficient

rξt . It is worth emphasizing that the same latent state variable, ξt, presumed to follow a

two-state Markov-switching process with transition matrix H controls changes in both αξt

and rξt .

1The DLS regression controls for leads and lags of the right-hand-side variables to adjust for the ineffi-
ciencies attributable to regressor endogeneity that arise in finite samples.
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The model can then be summarized as follows:

ct = αξt + βaat + βyyt +
k∑

i=−k

ba,i∆at+i +
k∑

i=−k

by,i∆yt+i + σcεct

mpst = rξt + σrεrt

εct ∼ N (0, 1) , εrt ∼ N (0, 1) ,

where ξt is a hidden variable that follows a Markov-switching process with transition matrix

H. Collect all model parameters into vector θ = (rξt , σ
r, β, αξt , σ

c,H)′. The model can be

thought as a multivariate regression with regime changes in which some of the parameters

are restricted to zero.

Our estimate of cayMS
t is based on the posterior mode of the parameter vector θ and the

corresponding regime probabilities. To simplify notation, we denote the vector containing

all variables whose coefficients are allowed to vary over time xM,t, while xF,t is used to denote

the vector containing all the variables whose coefficients are kept constant. We then obtain

ct = αξtxM,t + βxF,t + σcεct

mpst = rξtxM,t + σrεrt ,

where β = [βa, βy, ba,−k, ..., ba,+k, by,−k, ..., by,+k] and the vector xM,t is unidimensional and

always equal to one.

Collect the conditional probabilities πit|t = p(ξt = i|Y t;θ) for i = 1, ..,m into an m ×

1 vector πt|t = p(ξt|Y t;θ). The filtered probabilities reflect the probability of a regime

conditional on the data up to time t, πt|t = p(ξt|Y t;θ), for t = 1, ..., T , and are part of

the output obtained computing the likelihood function associated with the parameter vector

θ = {rξt , σr, β, αξt , σ,H}. They can be obtained using the following recursive algorithm

given by the Hamilton filter:

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

) (IA3)

πt+1|t = Hπt|t,
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where ηt is a vector whose j-th element contains the conditional density p(ct,mpst|ξt =

j, xM,t, xF,t;θ), that is,

p(ct,mpst|ξt = j, xM,t, xF,t;θ) =
1√

2πσc,2
1√

2πσr,2
exp

[
− [ct − (αjxM,t + βxF,t)]

2

2σc,2
− [mpst − rjxM,t]

2

2σr,2

]
,

(IA4)

the symbol � denotes element-by-element multiplication, and 1 is a vector with all elements

equal to one. To initialize the recursive calculation we need an assumption on the distribution

of ξ0. We assume that the two regimes have equal probabilities: p(ξ0 = 1) = 0.5 = p(ξ0 = 2).

The smoothed probabilities reflect all of the information that can be extracted from the

full data sample, πt|T = p(ξt|Y T ;θ). The final term, πT |T , is returned with the final step of

the filtering algorithm. A recursive algorithm can then be implemented to derive the other

probabilities:

πt|T = πt|t �
[
H′
(
πt+1|T (÷) πt+1|t

)]
,

where (÷) denotes element-by-element division.

In using the DLS regression (IA1) to estimate cointegrating parameters, we lose six leads

and six lags. For estimates of cayFCt , we take the estimated coefficients and we apply them

to the full sample. To extend our estimates of cayMS
t over the full sample, we can likewise

apply the parameter estimates to the full sample but we need an estimate of the regime

probabilities in the first six and last six observations of the full sample. For this we run the

Hamilton filter from period from −5 to T + 6 as follows. When starting at -5, we assume

that no lagged values are available and the DLS regression omits all lags, but all leads are

included. When at t = −4 we assume that only one lag is available and the DLS regression

includes only one lag, and so on, until we reach t = 0 when all lags are included. Proceeding

forward, when t = T + 1 is reached we assume that all lags are available and all leads except

one are available, when t = T + 2 we assume that all lags and all leads but two are available,

etc. Smoothed probabilities are then computed with standard methods as they only involve

the filtered probabilities and the transition matrix H.
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III. Gibbs Sampling Algorithm

This appendix describes the Bayesian methods used to characterize uncertainty in the

regression parameters. To simplify notation, we denote the vector containing all variables

whose coefficients are allowed to vary over time by xM,t, while xF,t denotes the vector con-

taining all of the variables whose coefficients are kept constant. We then obtain

ct = αξtxM,t + βxF,t + σcεct (IA5)

mpst = rξtxM,t + σrεrt , (IA6)

where β = [βa, βy, ba,−k, ..., ba,+k, by,−k, ..., by,+k] and the vector xM,t is unidimensional and

always equal to one.

Suppose the Gibbs sampling algorithm has reached the nth iteration. We then have

draws for rξt,n, σ
r
n, βn, αξt,n, σ

c
n, Hn, and ξTn , where ξTn = {ξ1,n, ξ2,n,...,ξT,n} denotes a draw

for the whole regime sequence. The parameters for equations (IA5) and (IA6) can be drawn

separately, while the regime sequence ξTn requires a joint evaluation of the Hamilton filter.

Finally, the transition matrix Hn is drawn conditionally on the regime sequence.

Specifically, the sampling algorithm is described as follows.

1. Sampling βn+1: Given αξt,n, σ
c
n, and ξTn , we transform the data:

c̃t =
ct − αξt,nxM,t

σcn
= β

xF,t
σcn

+ εt = βx̃t + εt.

The above is a regression with fixed coefficients β and standardized residual shocks.

Standard Bayesian methods may be used to draw the coefficients of the regression. We

assume a Normal conjugate prior β ∼ N (Bβ,0, Vβ,0)), so that the conditional (on αξt,n,

σcn, and ξTn ) posterior distribution is given by

βn+1 ∼ N (Bβ,T , Vβ,T )
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with Vβ,T =
(
V −1
β,0 + X̃ ′F X̃F

)−1

andBβ,T = Vβ,T

[
V −1
β,0Bβ,0 + X̃ ′F C̃

]
, where C̃ = (c̃1, ..., c̃T )′ ,

X̃F = (xF,1, ..., xF,T )′ , and Bβ,0 and V −1
β,0 control the priors for the fixed coefficients of

the regression. Keeping in mind that the residuals have been normalized to have unit

variance, with flat priors we have Bβ,0 = 0, V −1
β,0 = 0, and Bβ,T and Vβ,T coincide with

the maximum likelihood estimates (MLEs), conditional on the other parameters.

2. Sampling αi,n+1 for i = 1, 2: Given βn+1, σ
c
n, and ξTn , we transform the data:

c̃t =
ct − βn+1xF,t

σcn
= αξt

xM,t

σcn
+ εt = αξtx̃M,t + εt.

The above regression has standardized shocks and Markov-switching coefficients in the

transformed data. Using ξTn , we can group all of the observations that pertain to the

same regime i. Given the prior αi ∼ N (Bαi,0, Vαi,0)) for i = 1, 2 we use standard

Bayesian methods to draw αi from the conditional (on βn+1, σ
c
n, and ξTn ) posterior

distribution:

αi,n+1 ∼ N (Bαi,T , Vαi,T ) for i = 1, 2,

where Vαi,T =
(
V −1
αi,0

+ X̃ ′M,iX̃M,i

)−1

and Bαi,T = Vαi,T

[
V −1
αi,0

Bαi,0 + X̃ ′M,iC̃i

]
, with C̃i

and X̃M,i collecting all observations for the transformed data for which regime i is

in place. The parameters Bαi,0 and V −1
αi,0

control the priors for the Markov-switching

coefficients of the regression: αi ∼ N (Bαi,0, Vαi,0) for i = 1, 2. With flat priors, we have

Bαi,0 = 0 and V −1
αi,0

= 0, and Bαi,T and Vαi,T coincide with the MLEs, conditional on

the other parameters.

3. Sampling ri,n+1 for i = 1, 2: Given σrn and ξTn , we transform the data:

m̃pst =
mpst
σrn

= rξt
xM,t

σrn
+ εt = αξtx̃M,t + εrt .

The above regression has standardized shocks and Markov-switching coefficients in the

transformed data. Using ξTn , we can group all the observations that pertain to the same
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regime i. Given the prior ri ∼ N (Bri,0, Vri,0)) for i = 1, 2, we use standard Bayesian

methods to draw ri from the conditional (σri and ξTn ) posterior distribution:

ri,n+1 ∼ N (Bri,T , Vri,T ) for i = 1, 2,

where Vri,T =
(
V −1
ri,0

+ X̃ ′M,iX̃M,i

)−1

and Bri,T = Vri,T

[
V −1
ri,0
Bri,0 + X̃ ′r,iR̃i

]
, with R̃i and

X̃r,i collecting all observations for the transformed data for which regime i is in place.

The parameters Bri,0 and V −1
ri,0

control the priors for the Markov-switching coefficients

of the regression: ri ∼ N (Bri,0, Vri,0) for i = 1, 2. With flat priors, we have Bri,0 = 0

and V −1
ri,0

= 0, and Bri,T and Vri,T coincide with the MLEs, conditional on the other

parameters.

4. Sampling σcn+1: Given βn+1, αξt,n+1, and ξTn , we can compute the residuals of the

regression

c̃t = ct − βn+1xF,t − αξtxM,t = σcεt.

With the prior that σc has an inverse gamma distribution, σc ∼ IG (Q0, v0) , we use

Bayesian methods to draw σcn+1 from the conditional (on βn+1, αξt,n+1, and ξTn ) posterior

inverse gamma distribution:

σn+1 ∼ IG (Qc
T , vT ) , vT = T + v0, QT = Q0 + Ec′Ec,

where Ec is a vector containing the residuals, T is the sample size, and Q0 and v0

control the priors for the standard deviation of the innovations: σc ∼ IG (Q0, v0) . The

mean of a random variable with distribution σc ∼ IG (Qc
T , v

c
T ) is QT/vT . With flat

priors we have Q0 = 0 and v0 = 0, and the mean of σc is therefore (Ec′Ec) /T , which

coincides with the standard MLE estimate of σc, conditional on the other parameters.

5. Sampling σrn+1: Given rξt,n+1 and ξTn , we can compute the residuals of the regression

m̃pst = mpst − rξtxM,t = σrεrt .
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With the prior that σr has an inverse gamma distribution, σr ∼ IG (Q0, v0) , we use

Bayesian methods to draw σrn+1 from the conditional (on rξt,n+1 and ξTn ) posterior

inverse gamma distribution:

σn+1 ∼ IG (Qr
T , vT ) , vT = T + v0, Q

r
T = Q0 + Er′Er,

where E is a vector containing the residuals, T is the sample size, and Q0 and v0 control

the priors for the standard deviation of the innovations: σr ∼ IG (Q0, v0) . The mean

of a random variable with distribution σr ∼ IG (Qr
T , v

r
T ) is Qr

T/v
r
T . With flat priors we

have Q0 = 0 and v0 = 0, and the mean of σr is therefore (Er′Er) /T , which coincides

with the MLE of σr, conditional on the other parameters.

6. Sampling ξTn+1: Given rξt,n+1, σ
r
n+1, βn+1, αξt,n+1, σ

c
n+1, and Hn, we can treat equations

(IA5) and (IA6) as a multivariate regression in which some parameters are restricted

to zero. This allows us to obtain filtered probabilities for the regimes using the filter

described in Hamilton (1994). Following Kim and Nelson (1999) we then use Multi-

Move Gibbs sampling to draw a regime sequence ξTn+1.

7. Sampling Hn+1: Given the draws for the Markov-switching state variables ξTn+1, the

posterior for the transition probabilities does not depend on other parameters of the

model and follows a Dirichlet distribution if we assume a prior Dirichlet distribution.2

For each column of Hn+1, the posterior distribution is given by

Hn+1(:, i) ∼ D(aii + ηii,n+1, aij + ηij,n+1),

where ηij,n+1 denotes the number of transitions from state i to state j based on ξTn+1,

while aii and aij the corresponding priors. With flat priors, we have aii = 0 and aij = 0.

8. If n+ 1 < N, where N is the desired number of draws, go to step 1, otherwise stop.

2The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially
consider more than 2 regimes. See, for example, Sims and Zha (2006).

12



These steps are repeated until convergence to the posterior distribution is reached. We

check convergence by using the Raftery-Lewis Diagnostics for each parameter in the chain.

See Section III.A below. We use the draws obtained with the Gibbs sampling algorithm

to characterize parameter uncertainty. The Gibbs sampling algorithm is used to generate

a distribution for the difference between the two means in the same manner it is used to

generate a distribution for any parameter. For each draw from the joint distribution of the

model parameters, we compute the difference and store it. We may then compute means

and/or medians, and error bands, as for any other parameter of interest.

A. Convergence Checks

The 90% credible sets are obtained making 2,000,000 draws from the posterior using the

Gibbs sampling algorithm. One in every 1,000 draws is retained. We check convergence using

the methods suggested by Raftery and Lewis (1992) and Geweke (1992). For Raftery and

Lewis (1992) checks, we target 90% credible sets, with 1% accuracy to be achieved with 95%

minimum probability. We initialize the Gibbs sampling algorithm making a draw around

the posterior mode. Sims and Zha (2006) point out that in Markov-switching models it is

important to first find the posterior mode and then use it as a starting point for the Markov

Chain Monte Carlo (MCMC) algorithm due to the fact that the likelihood can have multiple

peaks. The tables below pertain to convergence of the Gibbs sampling algorithm.

IV. Most Likely Regime Sequence

In this appendix we explain how to compute the most likely regime sequence. This most

likely regime sequence is based on our estimates for the breaks in cayMS and mps, and is

taken as given in the portfolio MS-VAR and the model estimation. Specifically, we choose

the particular regime sequence ξTn = {ξ̂1,n, ..., ξ̂T,n} that is most likely to have occurred, given

our estimated posterior mode parameter values for θ . This sequence is computed as follows.

Let P (ξt = i|Zt−1;θ) ≡ πit|t−1. First, we run Hamilton’s filter to get the vector of filtered

probabilities πt|t, t = 1, 2, ..., T . The Hamilton filter can be expressed iteratively as
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πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hπt|t,

where ηt is a vector whose jth element contains the conditional density p(ct|ξt = j, xM,t, xF,t;θ),

the symbol � denotes element-by-element multiplication, and 1 is a vector with all elements

equal to one. The final term, πT |T , is returned with the final step of the filtering algorithm.

Then, a recursive algorithm can be implemented to derive the other smoothed probabilities:

πt|T = πt|t �
[
H′
(
πt+1|T (÷) πt+1|t

)]
,

where (÷) denotes element-by-element division. To choose the regime sequence most likely

to have occurred given our parameter estimates, consider the recursion in the next to last

period t = T − 1:

πT−1|T = πT−1|T−1 �
[
H′
(
πT |T (÷) πT |T−1

)]
.

We first take πT |T from the Hamilton filter and choose the regime that is associated with the

largest probability, that is, if πT |T = (0.9, 0.1), where the first element corresponds to the

probability of regime 1, we select ξ̂T = 1, indicating that we are in regime 1 in period T. We

then update πT |T = (1, 0) and plug into the right-hand side above along with the estimated

filtered probabilities for πT−1|T−1, πT |T−1 and estimated transition matrix H to get πT−1|T on

the left-hand side. Next we repeat the same procedure by choosing the regime for T −1 that

has the largest probability at T − 1. For example, if πT−1|T = (0.2, 0.8) , we select ξ̂T−1 = 2,

indicating that we are in regime 2 in period T − 1, and we update to πT−1|T = (0, 1), which

is used again on the right-hand side now

πT−2|T = πT−2|T−2 �
[
H′
(
πT−1|T (÷) πT−1|T−2

)]
.

We proceed in this manner until we have a most likely regime sequence ξT for the entire

sample t = 1, 2, ..., T . Two aspects of this procedure are worth noting. First, it fails if the
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updated probabilities are exactly (0.5, 0.5). Mathematically this is virtually zero. Second,

note that this procedure allows us to choose the most likely regime sequence by using the

recursive formula above to update the filtered probabilities sequentially from T to time t = 1.

This allows us to take into account the time dependence in the regime sequence as dictated

by the transition probabilities.

V. Book-to-Market Ratio and Present Discounted Values (PDVs)

We use the methods and assumptions of the previous section to obtain the present value

decomposition of the BM ratio. Consider an MS-VAR

Zt = cξt + AξtZt−1 + Vξtεt,

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m,

with m the number of regimes, evolves following the transition matrix H. If the MS-VAR

has more than one lag, the companion form can be used to recast the model as illustrated

above.

Section VII.A below on conditional expectations and volatility shows how to compute

Et (Zt+s) = wqt+s|t, where

qit+s|t ≡ Et (Zt+s1ξt=i) = E (Zt+s1ξt=i|It)

1′x = [0, ...1, ...0, 0, 0]′, mn = m ∗ n

and where It contains all of the information that agents have at time t, including knowledge

of the regime in place, for the case in which there are m regimes.

Now consider the formula from Vuolteenaho (1999):

θt =
∑∞

j=0 ρ
jEtrt+1+j +

∑∞
j=0 ρ

jEtft+1+j −
∑∞

j=0 ρ
jEte∗t+1+j,

Given that our goal is to assess whether assets with different risk profiles are differently

affected by the breaks in the long-term interest rates, we focus on the difference between the
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BM ratios. Specifically, given two portfolios x and y, we are interested in how the difference

in their BM ratios, θx,t − θy,t, varies across the two regimes:

θx,t − θy,t︸ ︷︷ ︸
Spread in BM ratios

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the difference in expected excess returns

−
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
PDV of the difference in expected earnings

,

If we want to correct the spread in BM ratios by taking into account expected earnings, we

then have

θx,t − θy,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the expected spread in excess returns

. (IA7)

The spread in excess returns rxy,t ≡ rx,t − ry,t. The right-hand side of (IA7) can then be

computed as

∑∞
j=0 ρ

jEt (rxy,t+1+j) =
∑∞

j=0 ρ
j1′rxywqt+1+j|t

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1 Hπt|t
]
.

We therefore have

θ̃xy,t ≡ θ̃x,t − θ̃y,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1 Hπt|t
]
,

(IA8)

where we use θ̃xy,t to define the spread in BM ratios corrected for earnings.

Similar formulas are used to compute return premia for the individual portfolios. The

premium for a portfolio z coincides with the present discounted value (PDV) of its excess

returns:

premiaz,t︸ ︷︷ ︸
Premia

≡
∑∞

j=0 ρ
jEt (rz,t+1+j)︸ ︷︷ ︸

PDV of excess returns

= 1′rzw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1 Hπt|t
]
, (IA9)

where 1′rz is a vector used to extract the PDV of excess returns from a vector containing

the PDV of all variables included in the VAR. In our VAR application, we compute πt|t to
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correspond to the most likely regime sequence, as defined below. This implies that the vector

πt|t assumes one of two values, (1, 0)′ or (0, 1)′.

Regime Average We also compute the regime average value of θ̃xy,t. The regime average

is defined as:

θ̃
i

xy ≡ 1′rxyw (I − ρΩ)−1 [Ωqi + C (I − ρH)−1 Hπi
]
,

where πi = 1i and qi ≡ [0, ..., µi, ..., 0] is a column vector that contains the conditional steady

state of the mean Zt conditional on being in regime i, that is, Ei (Zt) = µi = (In − Ai)−1 ci

and zero otherwise. Recall that the conditional steady state, µi, is a vector that contains

the expected value of Zt conditional on being in regime i. Therefore, the vector captures the

values to which the variables of the VAR converge if regime i is in place forever. Although

none of our regimes is estimated to be absorbing states, this is still a good approximation

for regimes that can be expected to persist for prolonged periods of time. Note that θ̃
i

xy is

computed by conditioning on the economy initially being at Zt = µi and in regime i, but

taking into account the possibility of regime changes in the future. Therefore, we can also

think about θ̃
i

xy as the expected value of θ̃xy,t, conditional on being in regime i today and on

the variables of the VAR being equal to the conditional steady-state mean values for regime

i. Formally

θ̃
i

xy = E
(
θ̃xy,t|ξt = i, Zt = µi

)
. (IA10)

Similarly, we can compute the regime average value of return premia for an individual

portfolio z, premiaz,t:

premia
i

z ≡ 1′rzw (I − ρΩ)−1 [Ωqi + C (I − ρH)−1 Hπi
]
. (IA11)

Formulas (IA8), (IA9), (IA10), and (IA11) are used in the paper to produce Figure 4

and Table IV. For each draw of the VAR parameters from the posterior distribution, we can

compute the evolution of θ̃xy,t and individual portfolio premiaz,t, by using (IA8) and (IA9).

We therefore obtain a posterior distribution for θ̃xy,t and premiaz,t. The medians of these

posterior distributions are reported as the blue solid lines in Figure 4. Similarly, for each
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draw of the VAR coefficients, we compute θ̃
i

xy and the difference θ̃
1

xy − θ̃
2

xy. We therefore

obtain a posterior distribution for θ̃
i

xy and for the difference θ̃
1

xy − θ̃
2

xy. The medians of the

distribution of θ̃
i

xy and premia
i

z for i = 1, 2 are reported in Figure 4 (red dashed line). Table

IV reports the median and the 68% posterior credible sets both for the distribution of θ̃
i

xy

for i = 1, 2, and for the difference in these across regimes, θ̃
1

xy − θ̃
2

xy. Finally, the last row of

Table IV reports the percentage of draws for which θ̃
1

xy− θ̃
2

xy > 0 and premia
1

z−premia
2

z > 0

as the probability that return premia are lower in the high-asset valuation/low-interest rate

regime than they are in the low-asset valuation/high-interest rate regime.

VI. Variable Selection for VARs to Compute PDV of Risk Premia

We start with a series of fixed regressors that are relevant for predicting market excess

returns or the return of the spread portfolios. To limit the size of the MS-VAR, we then use

the Akaike information criterion (AIC) to decide whether to include additional regressors.

Specifically, we compute the AIC for the equation(s) that correspond(s) to the return(s) that

we are trying to predict. We then choose the specification that minimizes the AIC.

Here are the details:

1. MS-VAR for the market excess return:

Fixed regressors (all lagged): Market excess return, inverse valuation ratio based on

cayMS. The inverse valuation ratio is included because it represents a measure of

asset valuation that can predict future stock market returns. Note that given we are

conditioning to the regime sequence obtained when estimating cayMS, the intercept

for the corresponding equation will adjust to reflect the low-frequency breaks identified

above.

Possible additional variables to be chosen for the estimation based on the AIC: Value

(small) spread (log-difference in the BM ratio of the small value portfolios and the
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BM ratio of the small growth portfolios), Real FFR, term yield spread, four of the

five Fama and French factors (SMB, HML, RMW, CMA), and cay (based on personal

consumption expenditures, available on Martin Lettau’s website.) Note that we do not

include the market excess return from Fama and French (MKTMINRF) as a possible

additional regressor because our dependant variable is the excess market return itself,

and hence, this variable is automatically included in the MS-VAR.

Additional regressors selected based on the AIC: Value spread, and the SMB and HML

factors from Fama and French.

2. MS-VAR for (i) Momentum return spread: The difference between the excess return

of the extreme winner (M10) portfolio and the excess return of the extreme loser (M1)

portfolio; (ii) Value return spread (S1): The difference between the excess return of

the small (size 1) high BM portfolio and the excess return of the small (size 1) low

BM portfolio; and (iii) Value return spread (S2): The difference between the excess

return of the size 2 high BM portfolio and the excess return of the small size 2 low BM

portfolio.

Fixed regressors (all lagged): (i) Momentum return spread; (ii) Value return spread

(S1); (iii) Value return spread (S2); (iv) Momentum BM spread: The difference between

the logarithm of the BM ratio of the extreme winner (M10) portfolio and the logarithm

of the BM ratio of the extreme loser (M1) portfolio; (v) Value BM spread (S1): The

difference between the logarithm of the BM ratio of the small (size quintile 1) high BM

portfolio and the logarithm of the BM ratio of the small (size 1) low BM portfolio; and

(vi) Value BM spread (S2): The difference between the logarithm of the BM ratio of

the size quintile 2 high BM portfolio and the logarithm of the BM ratio of the size 2

low BM portfolio.

Possible additional variables to be chosen for the estimation based on the AIC: Real

FFR computed as the difference between FFR and inflation, excess return of small
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growth portfolio, excess return of small value portfolio, and five Fama-French factors

(SMB, HML, RMW, CMA, MKTMINRF.)

Additional regressors selected based on the AIC: Real FFR and excess return of the

small value portfolio.
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VII. Estimation of the MS-VAR

In this appendix we provide details on the estimation of the MS-VAR. Given that we take

the regime sequence as given, we need only estimate the transition matrix and the parameters

of the MS-VAR across the two regimes. The model is estimated by using Bayesian methods

with flat priors on all parameters. As a first step, we group all of the observations that

belong to the same regime. Conditional on a regime, we have a fixed-coefficients VAR. We

can then follow standard procedures to make draws for the VAR parameters as follows.

Rewrite the VAR as

Y
T×n

= XAξt
(T×k)(k×n)

+ ε
T×n

, ξt = 1, 2

εt ∼ N (0,Σξt) ,

where Y = [Z1,..., ZT ]′ , the tth row of X is Xt =
[
1, Z ′t−1, Z

′
t−2

]
, Aξt = [cξt , A1,ξt , A2,ξt ]

′, the

tth row of ε is εt, and Σξt = VξtV
′
ξt
. If we specify a Normal-Wishart prior for Aξt and Vξt ,

Σ−1
ξt
∼ W

(
S−1

0 /v0, v0

)
vec (Aξt |Σξt) ∼ N

(
vec (B0) ,Σξt ⊗N−1

0

)
,

where E
(
Σ−1
ξt

)
= S−1

0 , the posterior distribution is still in the Normal-Wishart family and

is given by

Σ−1
ξt
∼ W

(
S−1
T /vT , vT

)
vec (Aξt |Σξt) ∼ N

(
vec (BT ) ,Σξt ⊗N−1

T

)
.

Using the estimated regime sequence ξTn , we can group all of the observations that pertain
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to the same regime i. The parameters of the posterior are therefore computed as

vT = Ti + v0, NT = X ′iXi +N0

BT = N−1
T

(
N0B0 +X ′iXiB̂MLE

)
ST =

v0

vT
S0 +

Ti
vT

Σ̂MLE +
1

vT

(
B̂MLE − B̂0

)′
N0N

−1
T X ′iXi

(
B̂MLE − B̂0

)
B̂MLE = (X ′iXi)

−1
(X ′iYi) , Σ̂MLE =

1

Ti

(
Yi −XiB̂MLE

)′ (
Yi −XiB̂MLE

)
,

where Ti, Yi, andXi denote the number and sample of observations in regime i. We choose flat

priors (v0 = 0, N0 = 0) so the expressions above coincide with the MLEs using observations

in regime i:

vT = Ti, NT = X ′iXi, BT = B̂MLE, ST = Σ̂MLE.

Armed with these parameters in each regime, we can make draws from the posterior dis-

tributions for Σ−1
ξt

and Aξt in regime i to characterize parameter uncertainty about these

parameters.

Given that we condition the MS-VAR estimates on the most likely regime sequence, ξTn ,

for cayMS, it is still of interest to estimate the elements of the transition probability matrix

for the MS-VAR parameters, HA, conditional on this regime sequence. Because we impose

this regime sequence, the posterior of HA depends only on ξTn and does not depend on other

parameters of the model. The posterior has a Dirichlet distribution if we assume a prior

Dirichlet distribution.3 For each column of HA, the posterior distribution is given by

HA(:, i) ∼ D(aii + ηii,r+1, aij + ηij,r+1),

where ηij,r+1 is the number of transitions from regime i to regime j based on ξTn , while aii

and aij are the corresponding priors. With flat priors, we have aii = 0 and aij = 0. Armed

with this posterior distribution, we can characterize uncertainty about HA. Note that the

posterior HA will in general be different from the posterior distribution of H because the

3The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially
consider more than two regimes. See, for example, Sims and Zha (2006).
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former is based on a particular regime sequence ξTn while the latter reflects the entire posterior

distribution for ξTn . The estimated transition matrix HA can in turn be used to compute

expectations taking into account the possibility of regime change (see the next subsection).

A. Conditional Expectations and Volatility

In this appendix we explain how expectations and economic uncertainty are computed

for variables in the MS-VAR. More details can be found in Bianchi (2016). Consider the

first-order MS-VAR

Zt = cξt + AξtZt−1 + Vξtεt, εt ∼ N (0, I) (IA12)

and suppose that we are interested in E0 (Zt) = E (Zt|I0) , where I0 is the information set

available at time 0. The first-order VAR is not restrictive because any VAR with l > 1 lags

can be rewritten as above by using the first-order companion form and the methods below

applied to the companion form.

Let n be the number of variables in the VAR of Section VI above. Let m be the number

of Markov-switching states. Define the mn× 1 column vector qt as

qt
mn×1

=
[
q1′
t , ..., q

m′
t

]′
,

where the individual n× 1 vectors qit = E0 (Zt1ξt=i) ≡ E (Zt1ξt=i|I0) and 1ξt=i is an indicator

variable that is one when regime i is in place and zero otherwise. Note that

qit = E0 (Zt1ξt=i) = E0 (Zt|ξt = i) πit,

where πit = P0 (ξt = i) = P (ξt = i|I0). Therefore we can express µt = E0 (Zt) as:

µt = E0 (Zt) =
∑m

i=1 q
i
t = wqt

where the matrix w
n×mn

= [In, ..., In] is obtained placing side by side m n-dimensional identity

matrices. The following proposition then holds

PROPOSITION 1: Consider a Markov-switching model whose law of motion can be described

by (IA12) and define qit = E0 (Zt1ξt=i) for i = 1...m. Then qjt = cjπ
j
t +

∑m
i=1 Ajq

i
t−1hji.
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It is then straightforward to compute expectations conditional on the information avail-

able at a particular point in time. Suppose we are interested in µt+s|t ≡ Et (Zt+s), that is,

the expected value for the vector Zt+s conditional on the information set available at time

t. If we define

qt+s|t =
[
q1′
t+s|t, ..., q

m′
t+s|t

]′
,

where qit+s|t = Et (Zt+s1ξt=i) = Et (Zt+s|ξt = i) πit+s|t, with πit+s|t ≡ P (ξt+s = i|It), we have

µt+s|t = Et (Zt+s) = wqt+s|t, (IA13)

where for s ≥ 1, qt+s|t evolves according to

qt+s|t = Cπt+s|t + Ωqt+s−1|t (IA14)

πt+s|t = Hπt+s−1|t (IA15)

with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (A1, ..., Am) (H⊗ In) , and C

mn×m
= bdiag (c1, ..., cm) ,

where for example, c1 is the n×1 vector of constants in regime 1, ⊗ represents the Kronecker

product, and bdiag is a matrix operator that takes a sequence of matrices and uses them to

construct a block diagonal matrix.

Similar formulas hold for the second moments. Before proceeding, let us define the

vectorization operator ϕ (X) that takes the matrix X as an input and returns a column

vector stacking the columns of the matrix X on top of one another. We also make use of the

following result: ϕ (X1X2X3) = (X ′3 ⊗X1)ϕ (X2).

Define the vector n2m× 1 column vector Qt as

Qt =
[
Q1′
t , ..., Q

m′
t

]′
,

where the n2 × 1 vector Qi
t is given by Qi

t = ϕ [E0 (ZtZ
′
t1ξt=i)]. This implies that we can

compute the vectorized matrix of second moments Mt = ϕ [E0 (ZtZ
′
t)] as

Mt = ϕ [E0 (ZtZ
′
t)] =

∑m
i=1 Q

i
t = WQt,
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where the matrix W = [In2 , ..., In2 ] is obtained by placing side by side m n2-dimensional

identity matrices. We can then state the following proposition

PROPOSITION 2: Consider a Markov-switching model whose law of motion can be described

by (IA12) and define Qi
t = ϕ [E0 (ZtZ

′
t1ξt=i)] , q

i
t = E0 [Zt1ξt=i] , and πit = P0 (ξt = i) , for

i = 1...m. Then Qj
t =

[
ĉcj + V̂ V jϕ [Ik]

]
πjt +

∑m
i=1

[
ÂAjQ

i
t−1 + D̂ACjq

i
t−1

]
hji, where ĉcj =

(cj ⊗ cj) , V̂ V j = (Vj ⊗ Vj) , ÂAj = (Aj ⊗ Aj) , and D̂ACj = (Aj ⊗ cj) + (cj ⊗ Aj) .

It is then straightforward to compute the evolution of second moments conditional

on the information available at a particular point in time. Suppose we are interested in

Et
(
Zt+sZ

′
t+s

)
, that is, the second moment of the vector Zt+s conditional on the information

available at time t. If we define

Qt+s|t =
[
Q1′
t+s|t, ..., Q

m′
t+s|t

]′
,

whereQi
t+s|t = ϕ

(
Et
(
Zt+sZ

′
t+s1ξt=i

))
= ϕ

(
Et
(
Zt+sZ

′
t+s|ξt = i

))
πit+s|t, we obtain ϕ

(
Et
(
Zt+sZ

′
t+s

))
=

WQt+s|t. Using matrix algebra, we obtain

Qt+s|t = ΞQt+s−1|t + D̂ACqt+s−1|t + V̂ cπt+s|t (IA16)

qt+s|t = Cπt+s|t + Ωqt+s−1|t, πt+s|t = Hπt+s−1|t, (IA17)

where

Ξ = bdiag(ÂA1, ..., ÂAm)(H⊗ In2), V̂ c =
[
V̂ V + ĉc

]
, ĉc = bdiag(ĉc1, ..., ĉcm),

V̂ V = bdiag(V̂ V 1ϕ [Ik] , ..., V̂ V mϕ [Ik]), D̂AC = bdiag(D̂AC1, ..., D̂ACm)(H⊗ In).

With the first and second moments at hand, it is possible to compute the variance s

periods ahead conditional on the information available at time t:

ϕ [Vt (Zt+s)] = Mt+s|t − ϕ
[
µt+s|tµ

′
t+s|t

]
, (IA18)

where Mt+s|t = ϕ
(
Et
(
Zt+sZ

′
t+s

))
=
∑m

i=1Q
i
t+s|t = WQt+s|t.

25



To report estimates of (IA13) and (IA18) we proceed as follows. Note that µt+s|t =

Et (Zt+s) = wqt+s|t and Mt+s|t depend only on qt+s|t and Qt+s|t. Furthermore, we can express

(IA14)-(IA15) and (IA16) to (IA17) in compact form as

Q̃t+s|t = Ξ̃sQ̃t|t where Ξ̃ =

 Ξ D̂AC V̂ cH
Ω CH

H

 , (IA19)

where Q̃t+s|t =
[
Q′t+s|t, q

′
t+s|t, π

′
t+s|t

]′
. Armed with starting values Q̃t|t =

[
Q′t|t, q

′
t|t, π

′
t|t

]′
, we

can then compute (IA13) and (IA18) using (IA19). To obtain π′t|t recall that we assume

It includes knowledge of the regime in place at time t, the data up to time t, Zt, and the

VAR parameters for each regime. Given that we assume knowledge of the current regime,

πit|t ≡ P (ξt = i|It) can assume only two values, 0 or 1. As a result π′t|t will be (1, 0) or (0, 1).

Thus, given Zt ∈ It, q′t|t =
[
q1′

t|t, q
2′

t|t

]′
with qit|t ≡ Et (Zt|ξt = i) πit|t will be [Z ′t · 1, Z ′t · 0]′ or

[Z ′t · 0, Z ′t · 1]′. Analogously, Q′t|t =
[
Q1′
t|t, Q

2′
t|t

]′
with Qi

t|t ≡ ϕ (Et (ZtZ
′
t|ξt = i))πit|t will be[

ϕ (ZtZ
′
t · 1)′ , ϕ (ZtZ

′
t · 0)′

]′
or
[
ϕ (ZtZ

′
t · 0)′ , ϕ (ZtZ

′
t · 1)′

]′
.

B. Mean-Square Stability

Consider the following MS-VAR model with n variables and m = 2 regimes:

Zt = cξt + A1,ξtZt−1 + A2,ξtZt−2 + Vξtεt, εt ∼ N (0, I) , (IA20)

where Zt is an n× 1 vector of variables, cξt is an n× 1 vector of constants, Al,ξt is an n× n

matrix of coefficients for l = 1, 2 and VξtV
′
ξt

is an n×n covariance matrix for the n×1 vector

of shocks εt. The process ξt controls the regime that is in place at time t and evolves based

on the transition matrix H.

When estimating the MS-VAR we require the model to be mean-square stable. Mean-

square stability is defined as follows

DEFINITION 1: An n-dimensional process Zt is mean-square stable if and only if there

exists an n-vector µ and an n2-vector M such that:

1) limt→∞ E0 [Zt] = µ
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2) limt→∞ E0 [ZtZ
′
t] = M

for any initial Z0 and ξ0.

Mean-square stability requires that first and second moments converge as the time horizon

goes to ∞. Under the assumptions that the Markov-switching process ξt is ergodic and the

innovation process εt is asymptotically covariance stationary, Costa, Fragoso, and Marques

(2004) show that a multivariate Markov-switching model such as the one described by (IA20)

is mean-square stable if and only if it is asymptotically covariance stationary. Both conditions

hold for the models studied in this paper and are usually verified in economic models.

Costa, Fragoso, and Marques (2004) show that to establish mean-square stability of a

process such as the one described by (IA20), it is enough to check mean-square stability

of the correspondent homogeneous process: Zt = AξtZt−1. In this case, formulas for the

evolution of first and second moments simplify substantially: qt = Ωqt−1 and Qt = ΞQt−1.

Let rσ (X) be the operator that given a square matrix X computes its largest eigenvalue.

We then have the following proposition.

PROPOSITION 3: A Markov-switching process whose law of motion can be described by

(IA20) is mean-square stable if and only if rσ (Ξ) < 1.

Mean-square stability allows us to compute finite measures of uncertainty as the time

horizon goes to infinity. Mean-square stability also implies that shocks do not have perma-

nent effects on the variables included in the MS-VAR.

C. Conditional Steady State

Consider a MS-VAR

Zt = cξt + AξtZt−1 + Vξtεt,

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m,

with m the number of regimes, evolves following the transition matrix H. If the MS-VAR

has more than one lag, the companion form can be used to recast the model as illustrated

above.
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The conditional steady state for the mean corresponds to the expected value for the

vector Zt conditional on being in a particular regime. This is computed by imposing that a

certain regime is in place forever

Ei (Zt) = µi = (In − Ai)−1 ci, (IA21)

where In is an identity matrix with the appropriate size. Note that unless the VAR co-

efficients imply very slow moving dynamics, after a switch from regime j to regime i, the

variables of the VAR will converge (in expectation) to Ei (Zt) over a finite horizon. If there

are no further switches, we can then expect the variables to fluctuate around Ei (Zt). There-

fore, the conditional steady states for the mean can also be thought of as the values to which

the variables converge if regime i is in place for a long enough period of time.

The conditional steady state for the standard deviation corresponds to the standard

deviation for the vector Zt conditional on being in a particular regime. The conditional

standard deviations for the elements in Zt are computed by taking the square root of the

main diagonal elements of the covariance matrix Vi (Zt) obtained imposing that a certain

regime is in place forever:

ϕ (Vi (Zt)) = (In2 − Ai ⊗ Ai)−1 ϕ
(
VξtV

′
ξt

)
, (IA22)

where In2 is an identity matrix with the appropriate size, ⊗ denotes the Kronecker product,

and the vectorization operator ϕ (X) takes a matrix X as an input and returns a column

vector stacking the columns of the matrix X on top of one another.

VIII. Dynamic Macro-Finance Model: Macro Block

This section reports technical details about the macro-finance dynamic stochastic general

equilibrium (MS-DSGE) model.

A. Constant-Gain Adaptive Learning
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Suppose the representative macro agent believes that inflation evolves according to an

AR(1) process:

πt = α + φπt−1 + ηt. (IA23)

Macro agents undertake an adaptive learning process whereby they estimate b ≡ (α, φ)′ from

past data following

Rt = Rt−1 + γt
(
xt−1x

′
t−1 −Rt−1

)
bt = bt−1 + γtR

−1
t xt−1

(
πt − b′t−1xt−1

)
, (IA24)

where xt = (1, πt)
′. Assume that the recursion is started at some point in the distant past.

The sequence of gains 0 < γt < 1 determines the speed of updating when faced with an

inflation surprise at time t. For γt = 1/t, the algorithm represents a recursive formulation

of an ordinary least squares estimation that uses all available data until time t with equal

weights (see Evans and Honkapohja (2001)). By contrast, for constant γt = γ, it represents a

constant-gain learning algorithm with exponentially decaying weights on past observations.

This implies that the agent gives more weight to the more recent observations, possibly

to guard against parameter instability, as in this model. This specification simplifies if

we assume that agents are uncertain about the long-term value of inflation but not its

persistence. If agents only learn about α and the recursion has started in the distant past,

we have

Rt = 1 if Rt−1 = 1 (IA25)

αmt = αmt−1 + γt
(
πt − φπt−1 − αmt−1

)
. (IA26)

To see the above, note that if φ were known, the agent would estimate α by running a

regression of πt − φπt−1 on a constant, or a vector of ones. So xt = 1 in every period

and Rt = Rt−1 + γt
(
xt−1x

′
t−1 −Rt−1

)
= Rt = Rt−1 + γt (1−Rt−1) . Starting value for

R = R0 => R1 = R0 + γ (1−R0). Continuing to iterate, this converges to one no matter

the value for R0 as long as 0 < γt < 1. Set xt = R1 = 1 in (IA24) to get (IA26).
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With constant-gain learning, the variable γt is a constant parameter that we denote by

γ. This implies

αmt = αmt−1 + γ
(
πt − φπt−1 − αmt−1

)
. (IA27)

Hereafter we assume that expectations are formed using a constant-gain adaptive rule.

Perceived trend inflation, πt, is defined as lim
h→∞

Emt (πt+h). Observe that, since expectations

obey the constant gain adaptive rule, πt is not constant but varies with information at time

t. This can be seen by taking expectations on both sides of equation (IA23) to find

πt = lim
h→∞

Emt (πt+h)

= lim
h→∞

Emt (αmt + φπt+h−1)

= lim
h→∞

Emt
(
αmt + φαmt + φ2αmt + ...φh−1αmt + φhπt

)
= αmt / (1− φ) ,

where we plug in the value of αmt that agents perceive at t as the last step. Above we use the

standard notion of “anticipated utility,” whereby beliefs at time t about αmt are perceived

by the agent to hold forever in the future, that is, the agent does not recognize that she

will update her estimate of αmt in future periods. With this, the AR(1) process implies a

one-to-one mapping between the perceived constant αmt and perceived trend inflation πt.

Using the relation between πt and αmt , we get

αmt = (1− φ) πt =>

(1− φ)πt = (1− φ) πt−1 + γ (πt − φπt−1 − (1− φ) πt−1) =>

πt = πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1) , (IA28)

where the second equation above follows from (IA27).

Finally, the unconditional mean of inflation as perceived by the agent is estimated recur-

sively under the constant-gain adaptive rule and hence depends on the sample of data she

uses at time t to estimate α. Denote this information by It. Taking perceived unconditional
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means on both sides of (IA23), we find that the unconditional mean of inflation as perceived

by the agent at time t is the same as perceived trend inflation:

Em (πt|It) = α + φEm (πt|It) => EmTmt (πt) = πt = αmt / (1− φ) .

Signal About the Inflation Target In our model, we combine the constant-gain learning

algorithm described above with a signal about the central bank’s inflation target, thereby

allowing beliefs to be shaped in part by additional information the agent receives about the

target. This signal could reflect the opinion of experts (as in MN), or a credible central bank

announcement. If we use αmCGt and πCGt to denote the beliefs implied by the constant-gain

learning described above, we obtain modified updating rules for αmt and πt that are weighted

averages of two terms:

αmt =
(
1− γT

)αmt−1 + γ
(
πt − φπt−1 − αmt−1

)︸ ︷︷ ︸
αmCGt

+ γT
[
(1− φ) πTξt

]
.

πt =
(
1− γT

)πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)︸ ︷︷ ︸
πCGt

+ γT
[
πTξt
]
.

The first terms in square brackets, αmCGt and πCGt , are the recursive updating rules implied

by constant-gain learning as in (IA27) and (IA28). These terms are combined with two terms

that involve the central bank’s current inflation target πTξt . Note that since αmt = (1− φ) πt

under the autoregressive model, the term (1− φ) πTξt is simply the value of αmt that would arise

if πt = πTξt . If γT = 1, the signal is completely informative and the agent’s belief about trend

inflation is the same as the inflation target. If γT = 0, the signal is completely uninformative

and the agent’s belief about trend inflation depends only on the learning algorithm. Thus,

the resulting laws of motion for beliefs are a weighted average of what would arise under

constant-gain learning and a term reflecting information about the current inflation target.
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B. Expected Inflation

Expected inflation from the point of view of the agents in the model is formed based on

equation (IA23) and their beliefs about the constant α, that is, αmt . Specifically, we have

Emt [πt+1] = αmt + φπt

Emt [πt+2] = αmt + φαmt + φ2πt

Emt [πt+3] = αmt + φαmt + φ2αmt + φ3πt

Emt [πt+4] = αmt + φαmt + φ2αmt + φ3αmt + φ4πt,

where, in line with the learning literature, we assume that agents do not take into account

the possibility that their beliefs might change in the future (i.e., they do not have anticipated

utility).

Cumulative inflation over the next year is

Emt [πt,t+4] =
[
4 + 3φ+ 2φ2 + φ3

]
αmt +

[
φ+ φ2 + φ3 + φ4

]
πt

=
[
4 + 3φ+ 2φ2 + φ3

]
(1− φ) πt +

[
φ+ φ2 + φ3 + φ4

]
πt,

where in the second row we use the fact that πt = αmt / (1− φ) . The general formulas are

Emt [πt+h] = αmt + φαmt + ...+ φh−1αmt + φhπt

Emt [πt,t+h] = (1/h)
∑h

i=1 Emt [πt+i] .

Using matrix algebra, we can express the perceived law of motion for inflation as[
αmt
πt+1

]
=

[
1 0
1 φ

] [
αmt
πt

]
+

[
0
ηt+1

]
.

This is equivalent to [
πt
πt+1

]
=

[
1 0

1− φ φ

]
︸ ︷︷ ︸

Ω

[
πt
πt

]
︸ ︷︷ ︸
eππSt

+

[
0
ηt+1

]
,
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where once again we use πt = αmt / (1− φ) and we use the matrix eππ to extract both inflation

πt and the perceived long-term inflation πt from the state vector St. The latter formulation is

used for the solution of the model since it is πt rather than αmt that appears in the state-space

representation of the model. It follows that

Emt [πt,t+h] = eπΩ (I − Ω)−1 (I − Ω4
)

(eππSt) ,

where the vector eπ is used to extract inflation.

C. Long-Run Monetary Neutrality

Suppose the central bank were to permanently change the inflation target. Would this

have a long-run influence on real activity? In a model with rational expectations, the relation

between inflation and the output gap is controlled by a New-Keynesian Phillips curve:

πt − πt = βEt [πt+1 − πt] + κ
[
yt−1 − y∗t−1

]
,

where πt denotes the long-term value of inflation that coincides, under rational expectations,

with the central bank’s inflation target πTξt . Taking the unconditional expectation on both

sides, we have

E [πt − πt] = βE [πt+1 − πt] + κE
[
yt−1 − y∗t−1

]
E [πt]− E [πt] = βE [πt]− βE [πt] + κE

[
yt−1 − y∗t−1

]
0 = κE

[
yt−1 − y∗t−1

]
,

where we use the fact that πt = E [πt] = πTξt . We therefore have E
[
y∗t−1

]
= E [yt−1] = 0.

Thus, in the long run, real output is expected to equal the natural rate and monetary policy

is neutral.

With sticky expectations, long-term neutrality still holds. In a rational expectations

model, the econometrician’s beliefs and the agent’s beliefs about trend inflation are always

aligned, even in the short run. These beliefs in turn align with the central bank’s target

inflation. In the constant-gain adaptive world, the agent’s beliefs about long-term inflation,
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πt, align with the econometrician’s beliefs and with the central bank’s inflation target only

in the long run. However, even with sticky expectations, if the central bank permanently

changes the target, we continue to have limh→∞ Et [πt+h] = E [πt] = πTξt = E [πt], where Et [·]

denotes the expectations of the econometrician. Thus,

πt − πt = βφ [πt − πt] + κ
[
yt−1 − y∗t−1

]
E [πt] = E [πt] +

κ

1− βφ
E
[
yt−1 − y∗t−1

]
0 = κE

[
yt−1 − y∗t−1

]
.

We therefore again have E
[
y∗t−1

]
= E [yt−1] = 0.

D. Solution and Estimation of the Macro Block

We can rewrite the system of equations as

ỹt = %ỹt−1 − σ [it − φπt − (1− φ) πt − r] + ft (IA29)

πt = πt +
κ

1− βφ
[
yt−1 − y∗t−1

]
(IA30)

it −
(
r + πTξt

)
= (1− ρi,ξt)

[
ψπ,ξt

(
πt − πTξt

)
+ ψ∆y,ξt (ỹt − ỹt−1)

]
(IA31)

+ρi,ξt
[
it−1 −

(
r + πTξt

)]
+ σiεi,t

ỹ∗t = ρy∗ ỹ
∗
t−1 + σy∗εy∗,t (IA32)

πt =
[
1− γT

] [
πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)

]
(IA33)

+γTπTξt

ft = ρfft−1 + σfεf,t. (IA34)

Define the parameter vectors θξt and θcξt as

θξt =
[
%, σ, β, κ, ψπ,ξt , ψ∆y,ξt , ρi,ξt , ρy∗ , γ

T , γ, φ, ρf
]′

θcξt =
[
πTξt , r

]′
.
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and the state vector St and the vector of Gaussian shocks εt as

St = [ỹt, ỹ
∗
t , πt, it, πt, ft]

′

εt =
[
εi,t, εy∗t , εf,t

]′
, εt ∼ N (0, I)

Let the matrix Q = diag (σi, σy∗ , σd) be a square matrix with the shock standard devi-

ations on the main diagonal. Conditional on each regime, the system of equations can be

rewritten using matrix notation:

Γ0 (θξt)St = Γc
(
θcξt
)

+ Γ1 (θξt)St−1 +Qεt.

Note that the vector Γc
(
θcξt
)

includes the inflation target for the corresponding regime.

Inverting the matrix Γ0 (θξt) , we obtain the solution of the model as MS-VAR:

St = C
(
θcξt , θξt

)
+ T (θξt)St−1 +R(θξt)Qεt,

where C
(
θcξt , θξt

)
= Γ−1

0 (θξt) Γc
(
θcξt
)
, T (θξt) = Γ−1

0 (θξt) Γ1 (θξt) , and R(θξt) = Γ−1
0 (θξt) .

The solution of the model can be combined with an observation equation to estimate the

model. Given that we know the regime sequence, we can estimate the model with a standard

Kalman filter algorithm. The only caveat is that the associated transition equation (IA36),

below, varies over time. We thus have the following state-space representation:

Xt = D + Z [S ′t, yt−1]
′
+ Uvt (IA35)

St = C
(
θcξt , θξt

)
+ T (θξt)St−1 +R(θξt)Qεt (IA36)

vt ∼ N (0, I) , (IA37)

where vt is a vector of observation errors and U is a diagonal matrix with the standard

deviations of the observation errors on the main diagonal. As said before, we condition on a

regime sequence ξt, so the transition equation (IA36) at each point in time is known.
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In our estimation, we use four observables: real GDP per capita growth, inflation, federal

funds rate, and the mean of the Michigan survey one-year-ahead inflation forecasts. All

variables are annualized. We have observation errors on all variables because we have three

shocks for four observables.

Thus, the vector of data Xt is defined as
∆GDP
Inflation
FFR

E (Inflation)

 =


∆GDP

0
0
0

+


4yt − 4yt−1

4πt
4it

[4 + 3φ+ 2φ2 + φ3] (1− φ) πt + [φ+ φ2 + φ3 + φ4] πt

+


vyt
vπt
vft
vet


where in the last row we use the fact that expectations for an agent in the model are given

by

Emt [πt,t+4] =
[
4 + 3φ+ 2φ2 + φ3

]
αmt +

[
φ+ φ2 + φ3 + φ4

]
πt

=
[
4 + 3φ+ 2φ2 + φ3

]
(1− φ) πt +

[
φ+ φ2 + φ3 + φ4

]
πt.

The mapping from the variables of the model to the observables can be written using

matrix algebra. The vector D is then

D =


∆GDP

0
0
0

 .
The matrix Z is thus

Z =


4 0 0 0 0 0 0 0 −4
0 0 4 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 [φ+ φ2 + φ3 + φ4] 0 0 0 0 [4 + 3φ+ 2φ2 + φ3] (1− φ) 0

 .
Note that the matrix Z loads detrended output (yt) and lagged detrended output (yt−1).

The likelihood is computed with the Kalman filter and then combined with a prior

distribution for the parameters to obtain the posterior. As a first step, a block algorithm is
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used to find the posterior mode, while a Metropolis-Hastings algorithm is used to draw from

the posterior distribution.

Draws from the posterior are obtained using a standard Metropolis-Hastings algorithm

initialized around the posterior mode. When working with models whose posterior distribu-

tion is very complicated in shape it is important to find the posterior mode. Here are the

key steps of the Metropolis-Hastings algorithm:

• Step 1: Draw a new set of parameters from the proposal distribution: ϑ ∼ N
(
θn−1, cΣ

)
.

• Step 2: Compute α (θm;ϑ) = min {p (ϑ) /p (θm−1) , 1} , where p (θ) is the posterior

evaluated at θ.

• Step 3: Accept the new parameter and set θm = ϑ if u < α (θm;ϑ) , where u ∼ U ([0, 1]),

otherwise set θm = θm−1.

• Step 4: If m ≤ nsim, stop. Otherwise, go back to step 1.

The matrix Σ corresponds to the inverse of the Hessian computed at the posterior mode

θ. The parameter c is set to obtain an acceptance rate of around 30%. We use four chains of

540, 000 draws each (one in every 200 draws is saved). Convergence is checked by using the

Brooks-Gelman-Rubin potential reduction scale factor using within and between variation

based on the four multiple chains used in the paper.

The only aspect of the estimation that it is not traditional is that the transition equation

(IA36) varies over time. However, given that we estimate the model fixing the regime

sequence, we can easily modify the standard Kalman filter to handle this change. Specifically,

the modified Kalman filter is as follows.

Given a sequence of regimes ξT = ξ1...ξT , the Kalman filter involves the following steps

for each t = 1...T :
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1. Prediction:

St|t−1 = C
(
θcξt , θξt

)
+ T (θξt)St−1|t−1 (IA38)

Pt|t−1 = T (θξt)Pt−1|t−1T (θξt)
′ +R(θξt)Q

2R(θξt)
′ (IA39)

ηt|t−1 = Xt −Xt|t−1 = Xt −D − Z ∗ St|t−1 (IA40)

ft|t−1 = ZPt|t−1Z
′ + U2. (IA41)

2. Updating:

St|t = St|t−1 +Ktηt|t−1 (IA42)

Pt|t = Pt|t−1 −KtZPt|t−1, (IA43)

where Kt = Pt|t−1Z
′f−1
t|t−1 is the Kalman gain.

The log-likelihood lnL is then obtained as

lnL = −.5
∑T

t=1 ln
(
2πft|t−1

)
− 0.5

∑T
t=1 η

′
t|t−1f

−1
t|t−1ηt|t−1.

Details about the solution: The matrices used to write the model in state-space form are

described below.

Equations:

yt = %yt−1 − σ [it − φπt − (1− φ)πt − r] + ft

πt = πt +
κ

1− βφ
[
yt−1 − y∗t−1

]
(IA44)

it −
(
r + πTξt

)
= (1− ρi,ξt)

[
ψπ,ξt

(
πt − πTξt

)
+ ψπ,ξt

(
πt − πTξt

)
+ ψ∆y,ξt (yt − yt−1)

]
+ρi,ξt

[
it−1 −

(
r + πTξt

)]
+ σiεi,t (IA45)

y∗t = ρy∗y
∗
t−1 + σy∗εy∗,t (IA46)

πt =
[
1− γT

] [
πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ)πt−1)

]
+γTπTξt + σπεπ,t (IA47)

ft = ρfft−1 + σfεf,t. (IA48)
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We get

yt = δyt−1 − σit + σφπt + σ(1− φ)πt + σr + ft

πt = πt +
κ

1− βφ
yt−1 −

κ

1− βφ
y∗t−1

it − (r + πTξt) = (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψπ,ξtπTξt
+ (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψπ,ξtπTξt
+ (1− ρi,ξt)ψ∆y,ξtyt − (1− ρi,ξt)ψ∆y,ξtyt−1

+ ρi,ξtit−1 − ρi,ξt(r + πTξt)

+ σiεi,t

y∗t = ρ∗yy
∗
t−1 + σy∗εy∗,t

πt = (1− γT )πt−1 + (1− γT )γ(1− φ)−1πt

− (1− γT )γ(1− φ)−1φπt−1

− (1− γT )γ(1− φ)−1(1− φ)πt−1

+ γTπTξt + σπεπ,t

ft = ρfft−1 + σfεf,t.

Equations with state variables at t on the left-hand side, everything else on the right-hand

side, and reordered to match the state variable vector are as follows:
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yt + σit − σφπt − σ(1− φ)πt − ft = δyt−1 + σr

y∗t = ρ∗yy
∗
t−1 + σy∗εy∗,t

πt − πt = +
κ

1− βφ
yt−1 −

κ

1− βφ
y∗t−1

it − (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψ∆y,ξtyt = −(1− ρi,ξt)ψπ,ξtπTξt
− (1− ρi,ξt)ψπ,ξtπTξt
− (1− ρi,ξt)ψ∆y,ξtyt−1

+ ρi,ξtit−1 − ρi,ξt(r + πTξt)

+ σiεi,t + (r + πTξt)

πt − (1− γT )γ(1− φ)−1πt = (1− γT )πt−1

− (1− γT )γ(1− φ)−1φπt−1

− (1− γT )γ(1− φ)−1(1− φ)πt−1

+ γTπTξt + σπεπ,t

ft = ρfft−1 + σfεf,t.

Goal: Matrix form with Γ0St = ΓC + Γ1St−1 + ΨQεt, where Γ0 and Γ1 are 6 × 6 matrices,

ΓC is 6× 1, and Ψ is 6× 4.

State variables: St = [yt, y
∗
t , πt, it, πt, ft]

′.

Stochastic variables: Q = diag(σi, σy∗ , σπ, σd).

First, Γ0, which corresponds to the time t state variables on the left-hand side. Empty cells

are zero.
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Γ0 =



yt y∗t πt it πt ft
yt 1 −σφ σ −σ(1− φ) −1
y∗t 1
πt 1 −1
it −(1− ρi,ξt)ψ∆y,ξt −(1− ρi,ξt)ψπ,ξt 1 −(1− ρi,ξt)ψπ,ξt
πt −(1− γT )γ(1− φ)−1 1
ft 1


Next, Γ1, which corresponds to the time t− 1 state variables on the right-hand. Empty cells

are zero.

Γ1 =



yt−1 y∗t−1 πt−1 it−1 πt−1 ft−1

yt %
y∗t ρ∗y
πt

κ
1−βφ − κ

1−βφ
it −(1− ρi,ξt)ψ∆y,ξt ρi,ξt
πt −(1− γT )γ(1− φ)−1φ (1− γT )(1− γ)
ft ρf


The matrix Ψ inserts the stochastic processes into each of the equations. Empty cells are

zero.

Ψ =



εi,t εy∗,t επ,t εf,t
yt
y∗t σy∗

πt
it σi
πt σπ
ft σf


Finally, ΓC collects all of the leftover constant terms on the right-hand side.
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ΓC =



yt σr
y∗t 0
πt 0
it (1− ρi,ξt)[r + πTξt(1− ψπ,ξt − ψπ,ξt)]
πt γTπTξt
ft 0



IX. Dynamic Macro-Finance Model: Asset Prices

In this section, we provide details on how to solve for asset prices in the baseline model

with learning on the side of the asset pricing (AP) agent. Note that learning on the side of

the AP agent does not affect the dynamics of the macro block, only the beliefs of the AP

agent about the future evolution of monetary policy. These beliefs affect forecasts of the AP

agent about all macro variables in the model and current asset prices.

The results on the evolution of the AP agent’s beliefs that we present below build on

Bianchi and Melosi (2016). Bianchi and Melosi (2016) develop methods to solve general equi-

librium models in which forward-looking agents are uncertain about the statistical properties

of the regime changes that they observe. For example, when observing hawkish monetary

policy, agents might be uncertain as to whether such a policy rule will persist for a long time

or not.

Agents in the model are fully rational, conduct Bayesian learning, and know that they do

not know. Therefore, when forming expectations, agents take into account the fact that their

beliefs will evolve according to what they observe in the future. A maintained assumption

of Bianchi and Melosi (2016) is that agents know the transition matrix governing regime

changes. However, some regimes differ only in terms of their persistence and the probability

of moving to different regimes. Thus, agents engage in Bayesian learning to uncover what

kind of policy regime they are currently facing (short-lasting or long-lasting). This implies

that agents are still rational but not perfectly informed.
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In this paper, we depart from the assumption that the transition matrix guiding the

Bayesian learning process coincides with the data-generating process (DGP) transition ma-

trix. This allows us to capture a series of behavioral features that help in explaining the

response of asset valuation to structural changes in the conduct of monetary policy. First,

while asset pricing agents might always be aware of what the central bank is currently doing,

they might be uncertain about what this implies for its future behavior. Second, if agents

have spent a long time in one policy regime, they might over-extrapolate what this implies

for future monetary policy and memories of previous regimes might fade away. Finally, con-

sistent with the previous assumption, when encountering a policy change after a prolonged

period under the same policy regime, agents might initially consider the policy change as

temporary and expect to revert to the old regime, coming to consider the regime change as

a structural one only after spending enough time in the new regime.

A. Beliefs: Overview

The policy rule follows two regimes, ξt = H for hawkish and ξt = D for dovish. We

assume that the asset pricing agent observes all variables of the economy in the current

period t. If agents can also observe the regime in place ξt and know the transition matrix

H governing the probability of moving across regimes, we have the full-information rational

expectations model.

Define the augmented state space S̃t = [St,mt, pdt,Ept (mt+1) ,Ept (pdt+1)]′ . Suppose first

that agents can observe the monetary policy regime in place and that they form expectations

based on the transition matrix H of the true DGP transitions across the two policy regimes.

In this case, the model can be expressed as

Γ0,ξtS̃t = Γc,ξt + Γ1,ξtS̃t−1 + Ψξtεt + Πηt, (IA49)

where ηt is a vector containing the endogenous expectation errors, and the random vector εt

contains the familiar Gaussian shocks. The variable ξt controls the parameter values in

place at time, θ (ξt) , assumes discrete values ξt ∈ {1, 2}, and evolves according to a Markov-
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switching process with transition matrix H. Denote the true DGP transition probabilities

H=

[
pHH pHD
pDH pDD

]
,

in which the probability of switching to regime j given that we are in regime i is denoted

by pij, where j = H,D. The model can then be solved with any of the solution algorithms

developed for Markov-Switching Rational Expectations (MS-RE) models.

Now suppose agents have a distorted transition matrix Hp that differs from H. The

model can be solved in the same way, replacing H with the perceived transition matrix Hp.

This gives us the “no learning” distorted beliefs case reported in the text, in which agents

correctly observe the monetary policy regime in place today, but overstate the probability

of remaining in the current regime.

Finally, under the baseline model, we combine distorted beliefs with learning about the

persistence of policy regimes. In this case, when a monetary policy regime change occurs,

the AP initially perceives the shift as a transitory deviation from the old regime, effectively

underestimating the true persistence of the regime change. However, as she spends more

time in the new regime the agent comes to believe that a structural change has occurred,

effectively overstating the true persistence of the regime change. Thus, the probabilities that

the agent assigns to future monetary policy regimes changes over time. To capture this idea,

we introduce the perceived regime sequence ξpt ∈ {1, 2, 3, 4} . Some of these perceived regimes

are assumed to bring about the same macro block model parameters, θ (ξpt ). Specifically,

two of the perceived regimes are characterized by hawkish monetary policy, while two of the

perceived regimes are characterized by dovish monetary policy. Without loss of generality, we

assume that regimes ξpt = 1 and ξpt = 2 belong to a block 1: b1 = {ξpt ∈ {1, 2} : θ (ξt) = θb1},

characterized by hawkish monetary policy (ξt = 1), while regimes ξpt = 3 and ξpt = 4 belong to

a block 2: b2 = {ξpt ∈ {3, 4} : θ (ξt) = θb2}, characterized by dovish monetary policy (ξt = 2).

The regime ξpt = 1 is perceived as a short-lasting hawkish regime, while ξpt = 2 is perceived as

a long-lasting hawkish regime. The perceived regime ξpt = 3 is assumed to be a short-lasting

dovish regime, while the perceived regime ξpt = 4 is assumed to be long-lasting dovish regime.
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Given that agents know the structure of the model and can observe the endogenous

variables and shocks, they can also determine which set of parameters is in place at each

point in time. In other words, they can tell whether monetary policy is dovish or hawkish

and can back out the history of policy regimes. This allows them to determine ξt and the

block bj in place at time t. However, while this is enough for agents to establish the history

of blocks, agents cannot exactly infer the realized regime ξpt , because the regimes within

each block share the same parameter values. It is important to emphasize that regimes that

belong to the same block are not identical in all respects, as they differ in their perceived

persistence and therefore the probability of switching to other perceived regimes.

The perceived probabilities of moving across regimes are summarized by the transition

matrix

Hp=


p11 0 0 p14

0 p22 p23 p24

0 p32 p33 0
p41 p42 0 p44

 , (IA50)

in which the probability of switching to regime j given that we are in regime i is denoted

by pij. Since ξpt = 1 is the perceived short-lasting hawkish regime, while ξpt = 2 is the

perceived long-lasting hawkish regime, it must be that p22 > p11. Analogously, since ξpt = 3

is the perceived short-lasting dovish regime, while ξpt = 4 is the perceived long-lasting dovish

regime, we have p44 > p33. We set p44 = p22 = 0.999 to capture the idea that, as agents spend

more time in a regime, they become convinced that this regime will persist indefinitely.4

Suppose that the economy is initially in a state in which the agent’s posterior probability

that she is in the long-lasting hawkish regime ξpt = 2 is unity. If policymakers then start

conducting dovish monetary policy, we further assume that agents will initially believe that

this likely represents just a temporary deviation from the ξpt = 2 regime. This idea is captured

by the conditions p23 > p24, p32 > 0, p31 = 0. That is, the probability that she has switched

from long-lasting hawkish to short-lasting dovish is greater than the probability of switching

4We rule out setting this probability to unity, since without further assumptions it would not be obvious
how to model the evolution of investor beliefs when a shift out of the perceived long-lasting regime inevitably
occurs.
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from long-lasting hawkish to long-lasting dovish, and given that she is in short-lasting dovish,

she can only switch back to long-lasting hawkish. However, because p44 > p33, if policymakers

remain in the dovish regime long enough, agents’ perceived posterior probability that they

are in a long-lasting dovish regime goes to unity. There are symmetric restrictions in the

second block, corresponding to p41 > p42, p14 > 0, p13 = 0. Note that the purpose of the

perceived short-lasting regimes is merely to model the idea that once investors perceive they

are in a long-lasting regime of one type (hawkish or dovish), deviations from that policy rule

might initially be viewed as transitory. We therefore rule out transitions from a perceived

short-lasting regime of one type to a short-lasting regime of the opposite type (p31 = p13 = 0)

and transitions from a long-lasting regime of one type to a short-lasting regime of the same

type (p21 = p43 = 0). The distorted beliefs component of the baseline model implies that

p22 > pHH and p44 > pDD, where recall that the latter transition probability pHH equals the

true probability of remaining in a hawkish regime, and pDD equals the true probability of

remaining in a dovish regime.

More generally given arbitrary initial beliefs, the above restrictions on the perceived

transition matrix Hp will have implications for how beliefs evolve over time. Given the

model of belief formation described below, if a regime change occurs after many periods of

the same monetary policy rule, agents will be almost certain that the deviation is temporary.

By contrast, if regime changes are frequent, agents will be uncertain about their nature and

beliefs could change more abruptly.

To solve the model, we first need to establish how agents’ beliefs about the perceived

regimes evolve over time. This will allow us to characterize the evolution of beliefs about

future monetary policy, that is, beliefs about the persistence of the current monetary policy

regime ξt. We then define an expanded set of regimes that keep track of both the policy rule

in place (ξt) and agents’ beliefs about future monetary policy (captured by the probabilities

assigned by agents to the regimes ξpt belonging to the same block).

We proceed in two steps. First, we characterize the evolution of agents’ beliefs within a

46



block for given prior beliefs. This allows us to track the evolution of beliefs as agents observe

more periods of the same policy rule regime. Second, we explain how agents’ beliefs are

pinned down once the economy moves across blocks. This allows us to characterize agents’

beliefs when agents observe a change in the conduct of monetary policy. All results are based

on Bayes’ theorem. Finally, for each of these cases, we describe how to recast the model

with information frictions as a perfect-information rational expectations model obtained by

expanding the number of regimes to keep track of agents’ beliefs.

B. Evolution of Beliefs Within a Block

In what follows, we derive the law of motion of agents’ beliefs conditional on being in a

specific block, that is, on observing a certain policy rule. The formulas derived below provide

a recursive law of motion for agents’ beliefs based on Bayes’ theorem. Such recursion applies

for any starting values for agents’ beliefs. These initial values will be determined by agents’

beliefs the moment the system enters the new block, that is, the moment agents observe a

policy regime that is different from the one observed in the previous period. We characterize

these initial beliefs in the next subsection.

As we note in the previous section, agents can infer the history of the blocks (i.e. the

history of the policy rule in place, ξT ). Therefore, at each point in time, agents know the

number of consecutive periods spent in the current block since the last switch. Let us denote

the number of consecutive realizations of block i at time t as τ it , i ∈ {1, 2}. To fix ideas,

suppose that the system is in block 1 (hawkish monetary policy) at time t, implying that

τ 1
t > 0 and τ 2

t = 0. Then there are only two possible outcomes for the next period. The

economy can spend an additional period in block 1 (hawkish monetary policy), implying that

τ 1
t+1 = τ 1

t + 1 and τ 2
t+1 = 0, or it can move to block 2 (dovish monetary policy), implying

τ 1
t+1 = 0 and τ 2

t+1 = 1. In this subsection, we restrict our attention to the first case.

Using Bayes’ theorem and the fact that prob
(
ξpt−1 = 2|τ 1

t−1

)
= 1 − prob

(
ξpt−1 = 1|τ 1

t−1

)
,

the probability of being in regime 1 given that we have observed τ 1
t consecutive realizations
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of block 1, prob (ξpt = 1|τ 1
t ) , is given by

prob
(
ξpt = 1|τ 1

t

)
=

prob
(
ξpt−1 = 1|τ 1

t−1

)
p11

prob
(
ξpt−1 = 1|τ 1

t−1

)
p11 + prob

(
ξpt−1 = 2|τ 1

t−1

)
p22

=
prob

(
ξpt−1 = 1|τ 1

t−1

)
p11

prob
(
ξpt−1 = 1|τ 1

t−1

)
(p11 − p22) + p22

, (IA51)

where τ 1
t = τ 1

t−1 +1 and for τ 1
t > 1. Notice that for τ 1

t = 1, prob (ξpt = 1|τ 1
t ) denotes the initial

beliefs that we discuss in Section IX.C. Equation (IA51) is a rational first-order difference

equation that allows us to recursively characterize the evolution of agents’ beliefs about

being in regime 1 while the system is in block 1. As agents observe more periods of block

1 (hawkish monetary policy), the probability that they assign to the short-lasting hawkish

regime 1 declines. Once agents have spent enough time under hawkish monetary policy, they

conclude that the probability of a short-lasting regime is zero.

Similarly, the probability of being in regime 3 given that we have observed τ 2
t consecutive

realizations of block 2, prob (ξt = 3|τ 2
t ) , can be analogously derived:

prob
(
ξpt = 3|τ 2

t

)
=

prob
(
ξpt−1 = 3|τ 2

t−1

)
p33

prob
(
ξpt−1 = 3|τ 2

t−1

)
p33 + prob

(
ξpt−1 = 4|τ 2

t−1

)
p44

=
prob

(
ξpt−1 = 3|τ 2

t−1

)
p33

prob
(
ξpt−1 = 3|τ 2

t−1

)
(p33 − p44) + p44

. (IA52)

where τ 2
t = τ 2

t−1 + 1 and for τ 2
t > 1.

The recursive equations (IA51) and (IA52) characterize the dynamics of agents’ beliefs

in both blocks for a given set of prior beliefs. Bianchi and Melosi (2016) show that under

our assumptions for the transition matrix, these recursive equations converge as τ 1
t and τ 2

t

grow. Once these parameters reach sufficiently high values, denoted by τ 1 and τ 2, there

is no further significant change to the probabilities assigned to the short- and long-lasting

regimes. In particular, the probability assigned to the short-lasting regimes converges toward

zero. In what follows, we denote the converging probabilities for the short-lasting regimes

prob (ξpt = 1|τ 1) and prob (ξpt = 3|τ 2) by λ̃b1and λ̃b2 , respectively. The converging probabil-

ities for the respecive long-lasting regimes are then 1 − λ̃b1and 1 − λ̃b2 , respectively. This
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convergence result will be key to being able to recast the model with learning in terms of a

finite dimensional set of regimes indexed with respect to agents’ beliefs.

C. Evolution of Beliefs Across Blocks

In the previous subsection, we characterize the evolution of agents’ beliefs conditional

on being in a specific block, that is, on observing additional realizations of the same policy

rule. The formulas derived above apply to any set of initial beliefs. In this subsection, we

pin down agents’ beliefs at the moment the economy moves across blocks, that is, for the

alternative case in which the policy regime observed at time t differs from the policy regime

in place at time t − 1. These beliefs serve as starting points for the recursions (IA51) and

(IA52) governing the evolution of beliefs within a block.

Suppose for a moment that before switching to the new block, agents are convinced of

being in one of the two regimes of the current block (in other words, they believe that they

know which ξpt is in place). Notice that in this case the transition matrix conveys all the

information necessary to pin down agents’ starting beliefs about the regime in place within

the new block. Specifically, if the economy moves from block 2 (dovish) to block 1 (hawkish),

the probability of being in regime 1 (short-lasting hawkish) is given by

prob
(
ξpt = 1|ξpt−1 = 3, τ 1

t = 1
)

=
p31

p31 + p32

= 0 (IA53)

if the economy was under regime 3 (short-lasting dovish) in the previous period, or by

prob
(
ξpt = 1|ξpt−1 = 4, τ 1

t = 1
)

=
p41

p41 + p42

= 1 (IA54)

if the economy was under regime 4 (long-lasting dovish) in the previous period. Symmetri-

cally, the initial probability of being in regime 3 (short-lasting dovish) given that the economy

just moved to block 2 (hawkish monetary policy) is given by

prob
(
ξpt = 3|ξpt−1 = 1, τ 2

t = 1
)

=
p13

p13 + p14

= 0 (IA55)

if the economy was under regime 1 (short-lasting hawkish) in the previous period, or by

prob
(
ξpt = 3|ξpt−1 = 2, τ 2

t = 1
)

=
p23

p23 + p24

= 1 (IA56)
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if the economy was previously under regime 2 (long-lasting hawkish).

However, in the model, agents are generally not sure about the nature (short-lasting

versus long-lasting) of the observed monetary policy regime that is in place. Therefore,

their beliefs the moment the economy moves from one block to the other will be a weighted

average of the probabilities outlined above. In general, the weights will depend in turn on

agents’ beliefs right before the switch. Specifically, agents’ starting beliefs in a new block 1

upon the shift from block 2 are given by

prob {ξpt = 1|It} =

(
1− prob

{
ξpt−1 = 3|It−1

})
p41

prob
{
ξpt−1 = 3|It−1

}
p32 +

(
1− prob

{
ξpt−1 = 3|It−1

})
(p41 + p42)

,

(IA57)

while if the system just entered block 2, starting beliefs read

prob {ξpt = 3|It} =

(
1− prob

{
ξpt−1 = 1|It−1

})
p23

prob
{
ξpt−1 = 1|It−1

}
p14 +

(
1− prob

{
ξpt−1 = 1|It−1

})
(p23 + p24)

,

(IA58)

where It includes the history of policy regimes (blocks) up to time t. Because the above are

recursive formulations, we find that the only information in It that is relevant for knowing

the starting beliefs upon switching to a new block is the agent’s beliefs last period and the

perceived transition matrix Hp.

To summarize, taking together movements within and across blocks, two variables pin

down the dynamics of beliefs over time: how many consecutive periods the system has spent

in the current block, and agents’ initial beliefs when the system entered the current block.

D. Tracking Beliefs

To solve the model under learning, we need to keep track of the evolution of beliefs. An

approximation is required, since beliefs are continuous variables with an infinite number of

possible values. To keep the problem tractable, we map beliefs into a grid of possible values.

As the number of grid points approaches infinity, the approximation becomes arbitrarily

accurate. Note that for each point in the grid, (IA57) and (IA58) tell us how beliefs will

evolve if we observe a change in the conduct of monetary policy, while (IA51) and (IA52)
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tell us how beliefs will evolve if an additional period of the same policy regime is observed.

In other words, these two pairs of equations tell us how beliefs evolve across every possible

scenario. This allows us to compute the probability of moving to any point in the grid from

any other point, and can be represented by an expanded transition matrix that keeps track of

both the evolution of policymakers’ behavior and agents’ beliefs. Once we have the expanded

transition matrix, we can combine it with the model equations to solve the model. When

agents form expectations, the expanded transition matrix will determine the evolution of

their beliefs about future monetary policy. Importantly, agents know that they do not know :

they understand that their beliefs change based on what they will observe in the future. In

what follows, we provide the details.

Denote the grid for beliefs prob {ξpt = 1|It} as Gb1= {G1, ...,Gg1} and for beliefs prob {ξpt = 3|It}

as Gb2= {Gg1+1, ...,Gg1+g2} , where 0 ≤ Gi ≤ 1, for all 1 ≤ i ≤ g = g1 + g2. Furthermore,

we denote the whole grid as G = Gb1 ∪ Gb2 . Endowed with such a grid, we can keep track

of agents’ beliefs and policymakers’ behavior by introducing a new set of regimes ζpt . The

new regime ζpt characterizes the policy regime in place and the knot of the grid G that best

approximates agents’ beliefs, that is, in our notation prob {ξpt = 1|It} when the system is

in block 1 and prob {ξpt = 3|It} when the system is in block 2. Thus, each regime ζpt is

associated with a pair {ξt = 1, prob {ξpt = 1} = Gb1} or {ξt = 2, prob {ξpt = 3} = Gb2}. For

example, the regime ζpt = g1 + i is associated with the pair {ξt = 2, prob {ξpt = 3} = Gg1+i}

and corresponds to monetary policy being dovish (ξt = 2) and agents thinking that the

probability of being in the short-lasting dovish regime is Gg1+i.

The expanded transition probability matrix for these new regimes can be pinned down

using the recursions (IA51) and (IA52) and the initial conditions (IA57) and (IA58). Denote

this expanded perceived transition matrix Ĥp. The algorithm below illustrates how exactly

to perform this task.

Algorithm Initialize the transition matrix Ĥp for the new regimes ζpt , setting Ĥp = 0g×g.
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Step 1 For each of the two blocks, employ the following steps (without loss of generality, we

describe the steps for block 1):

Step 1.1 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute

Ĥp (i, j) = prob
{
ξpt−1 = 1|It−1

}
p11 +

(
1− prob

{
ξpt−1 = 1|It−1

})
p22,

where prob
{
ξpt−1 = 1|It−1

}
= Gi and j ≤ g1 is set so as to min |prob {ξpt = 1|It} − Gj|,

where prob {ξpt = 1|It} is computed using the recursive equation (IA51) by ap-

proximating prob
{
ξpt−1 = 1|It−1

}
= Gi. To ensure the convergence of beliefs, we

correct j as follows: if j = i and Gi 6= λ̃b1 , then set j = min (j + 1, g1) if Gi < λ̃b1

or j = max (1, j − 1) if Gi > λ̃b1 .

Step 1.2 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute Ĥp (i, l) = 1− Ĥp (i, j) with

l > g1 satisfying

min

∣∣∣∣∣
(
1− prob

{
ξpt−1 = 1|It−1

})
p23

prob
{
ξpt−1 = 1|It−1

}
p14 +

(
1− prob

{
ξpt−1 = 1|It−1

})
(p23 + p24)

− Gl

∣∣∣∣∣ ,
where prob

{
ξpt−1 = 1|It−1

}
= Gi.

Step 2 If no column of Ĥp has all zero elements, stop. Otherwise, go to Step 3.

Step 3 Construct matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g

i=1 Ĥp (i, j) = 0

set j = j + 1. Otherwise, if
∑g

i=1 Ĥp (i, j) 6= 0, (i) set T (j, l) = 1, (ii) set T (j, v) = 0

for any 1 ≤ v ≤ g and v 6= l, and (iii) set l = l + 1 and j = j + 1.

Step 4 Write the transition equation as H̃p = T · Ĥp · T ′. If no column of H̃p has all zero

elements, set Ĥp = H̃p and stop. Otherwise, go to step 3.

Step 1.1 determines the regime j the system will go to if it stays in block 1 next period

and fills up the appropriate element (i, j) of the transition matrix Ĥp with the probability of

moving to regime j. Step 1.2 computes the regime l the system will go to if it leaves block 1
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and fills up the appropriate element (i, l) of matrix H̃p. Steps 2 to 4 are not necessary but

help keep the dimension of the grid small, getting rid of regimes that will never be reached.

For computational convenience, we always add the convergence points for the two blocks

(i.e., λ̃b1 in the case of block 1) to the grid G. On many occasions it is a good idea to make

the grid near the convergence knot very fine to improve the precision of the approximation.

At the end of this algorithm we end up with a transition matrix for the expanded regime

space with elements taking the form

Ĥij = Pr (ζt+1 = j|ζt = i) . (IA59)

X. Solving the Dynamic Macro-Finance Model

The model can be solved in two steps. First, we solve for the macro dynamics. This

returns a MS-VAR in the state vector St defined above. Next, conditional on this solution

and the probability assigned by the asset pricing agent to moving across perceived regimes

as captured by the expanded (g × g) transition matrix Ĥp, we can solve for the evolution of

asset prices.

In equations, the first step returns a MS-VAR in the macro state vector,

St = Cξt + TξtSt−1 + RξtQεt.

The second step takes this regime-specific law of motion for the macroeconomy as an input

and combines it with the equilibrium asset pricing relations, conditional on the law of motion

for agents’ beliefs as captured by the transition matrix Ĥp. All variables that enter the asset

pricing system of equations are linear transformation of the variables entering the macro

block for which we have a solution. For example, the log SDF can be expressed as a function

of the macro state vector St: mt = emSt, where em is a vector that extracts the desired linear
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combination of the variables contained in St. We have

mt = log (δ)− σpec (St − St−1) + ϑp,t−1 (IA60)

eiSt − Ept [eπSt+1] = −Ept [mt+1]−.5Vp
t [mt+1 + eiSt − eπSt+1]︸ ︷︷ ︸

Regime-dependent risk adjustment

− lp (IA61)

pdt = κ0 + µ+ [.5Vp
t [mt+1 + ec (St+1 − St) + κ1pdt+1]]︸ ︷︷ ︸

Regime-dependent risk adjustment

(IA62)

+Ept [mt+1 + ec (St+1 − St) + κ1pdt+1]

ηpdt = pdt − Ept−1 (pdt) (IA63)

ηmt = mt − Ept−1 (mt) (IA64)

St = Cξt + TξtSt−1 + Rξt+1Qεt, (IA65)

where ex is a vector that extracts the desired linear combination of the variables contained

in St: xt = exSt.

Notice that the solution of the macro block implies heteroskedasticity for the endogenous

variables, the Markov-switching coefficients in the equation for St. To keep the framework

such that it is conditionally lognormal with a risk adjustment, we follow Bansal and Zhou

(2002) and compute the one-step-ahead conditional variance as the weighted average of the

conditional variances across regimes resulting from the Gaussian shocks. This implies that

lognormality is assumed, conditional on ξt+1. (The Section X.A below entitled “Solving

the model with a risk adjustment” below provides details on lognormality in a setting with

regime shifts.) Define the augmented state space as S̃t = [St,mt, pdt,Ept (mt+1) ,Ept (pdt+1)].

For any variable xt in the asset pricing block, conditional lognormality assumption implies

Vp
t [xt+1] ≈ Ept (Vt [xt+1|ξt+1]) = exEpt

[
Rξt+1QQ′R′ξt+1

]
ex, (IA66)

where ex is a vector used to extract the desired linear combination of the variables in St. This

assumption maintains conditional lognormality of the entire system and guarantees that the

algorithm above converges in one step. Notice that Vt [·|ξt+1] without a “p” superscript is
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the conditional variance under the objective measure given the specification of the lognormal

shocks in the model.

The second step consists of expanding the number of regimes to reflect the evolution of

beliefs. To do so, we recast the model in terms of the new set of regimes ζt that keep track of

both the behavior of the monetary authority (as captured by ξt) and agents’ beliefs about the

nature of these regime changes (i.e., beliefs about ξpt ). Furthermore, given the approximation

(IA66), the one-step-ahead variance Vp
t [xt+1] is a function only of the expanded regimes at

time t, ζt. This leaves us with a new system to be solved, given by

Γ0 (ζt) S̃t = Γc (ζt) + Γ1 (ζt) S̃t−1 + Ψ (ζt) Qεt + Πηt, (IA67)

where the regime ζt ∈ {1, ..., g1 + g2} follows the transition matrix Ĥp and the terms Γc (ζt)

now also contain the regime-specific risk adjustment terms Vp
t [xt+1] that are part of the

asset pricing block. Note that Γc (ζt) depends on Vp
t [xt+1] as given in (IA66). For variables

in the system (IA60) to (IA65) expressed in recursive form, like pdt, the vector ex is not

known until we solve for S̃t. We therefore employ an iterative procedure. First, we guess a

value for ex. We can then use solution methods available for dynamic macro models with

Markov-switching random variables. The resulting solution once again takes the form of a

MS-VAR:

S̃t = C̃
(
ζt, Ĥ

p
)

+ T̃
(
ζt, Ĥ

p
)
St−1 + R̃

(
ζt, Ĥ

p
)

Qεt. (IA68)

We use the solution to update ex, then solve the model again. The iteration converges in

one step due to a linear system and the fact that the risk corrections only affect Γc (ζt). The

desired observables can then be reconstructed starting from the augmented state vector.

Armed with S̃t, any vector of endogenous variables Yt in the model has a solution taking

the form

Yt = D + ZS̃t,

where D is a constant vector and Z is a constant matrix.
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Let the model solution for the price-dividend ratio be denoted by pdt = pd
(
S̃t

)
, where

pd (·) is a linear transformation. The solution satisfies the recursion below. To see how agents’

beliefs matter for asset prices, consider the recursive formulation for the price-dividend ratio:

pd
(
S̃t

)
= κ0+µ+[.5Vp

t [mt+1 + ec (St+1 − St) + κ1pdt+1]]︸ ︷︷ ︸
Regime-dependent risk adjustment

+Ept
[
mt+1 + ec (St+1 − St) + κ1pd

(
S̃t+1

)]
.

As explained above, the regime-dependent risk adjustment depends only on the regime

in place at time t. Thus,

pd
(
S̃t

)
= κ0+µ+

[
.5exEpt

[
R̃
(
ζt, Ĥ

p
)

QQ′R̃
(
ζt, Ĥ

p
)′]

ex

]
︸ ︷︷ ︸

Regime-dependent risk adjustment

+Ept
[
mt+1 + ec (St+1 − St) + κ1pd

(
S̃t+1

)]
,

where we use ex to denote a vector that extracts the desired linear combination from the

one-step-ahead covariance matrix. We then have

pd
(
S̃t

)
= κ0 + µ+ Ept

[
.5exR̃ζt+1QQR̃′ζt+1

ex +mt+1 + ec (St+1 − St) + κ1pd
(
S̃t+1

)]
pd
(
S̃t

)
= κ0 + µ+

∑g1+g2
j=1 P {ζt+1 = j|ζt = i}Ept

[
.5exR̃ζt+1QQR̃′ζt+1

ex +mt+1

+ec (St+1 − St) + κ1pd
(
S̃t+1

)
,

]

where we use the output in (IA59) from the algorithm discussed above to obtain the P {ζt+1 = j|ζt = i}

that are elements of the expanded transition matrix Ĥp.

A. Solving a Model with Risk Adjustment

This section provides more details on solving the model with a risk adjustment. As

explained in the main text, our approach is quite common in the asset pricing and macro-

finance literatures. This appendix provides the following points:

1. The method can be characterized as a guess-and-verify approach. This is because

once the model is log-linearized and solved, with or without a risk adjustment, the

variables of the model follow a linear process in logs and are therefore lognormal in
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levels. The method exploits this property of the solution when log-linearizing the model

and implements a risk-adjusted log-linearization. This affects only the equilibrium

conditions in which an expectational term appears. Note that lognormality does not

affect the rest of the log-linearized equations. When introducing regime changes, the

process becomes conditionally lognormal, conditional on the regimes.

2. To understand why the solution without risk adjustment already implies lognormality,

it is important to notice that all shocks are specified as shocks to log variables. Thus,

when taking a lognormal approximation, the solution of the model implies a linear

process in logs with Gaussian innovations.

3. The solution with risk adjustment allows us to take into account the effects of risk on

asset prices.

B. Conditional Lognormality

Suppose that a variable Zt+1 has a lognormal distribution such that zt+1 = log(Zt+1)

follows the process

zt+1 = c+ azt + σεt+1.

Then

ln (Et[Zt+1]) = Et[zt+1] + 0.5Vt[zt+1] = c+ azt + 0.5σ2. (IA69)

Now suppose that zt+1 = log(Zt+1) follows a Markov-switching process,

zt+1 = cξt+1 + aξt+1zt + σξt+1εt+1, (IA70)

where ξt+1 denotes the regime at time t + 1. The solution of the model, presented in the

main text, has this form. When we log-linearize the system of model equations, we face

log-linearization equations of the form

Et[ezt+1 ]. (IA71)
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We extend the approach in Bansal and Zhou (2002), who use conditional lognormality of

the process in equation (IA70). Conditioning on the regime in the next period, lognormality

holds:

Et[ezt+1|ξt+1] = eEt[zt+1|ξt+1]+0.5Vt[zt+1|ξt+1],

ln(Et[ezt+1|ξt+1]) = Et[zt+1|ξt+1] + 0.5Vt[zt+1|ξt+1].

Therefore, using the law of iterated expectations,

Et[ezt+1 ] = Et[Et[ezt+1|ξt+1]] = Et[eEt[zt+1|ξt+1]+0.5Vt[zt+1|ξt+1]] =

= Et[ecξt+1
+aξt+1

zt+σξt+1
εt+1 ].

To proceed, we follow Bansal and Zhou (2002) and use the approximation e
cξt+1

+azt+0.5σ2
ξt+1 ≈

1 + cξt+1 + aξt+1zt + 0.5σ2
ξt+1

. With this approximation, we have

Et[ezt+1 ] = Et[Et[ezt+1 |ξt+1]] ≈ Et[1 + cξt+1 + aξt+1zt + 0.5σ2
ξt+1

] = (IA72)

= 1 + Et[cξt+1 + aξt+1zt] + 0.5Et[σ2
ξt+1

]. (IA73)

We thus obtain

ln (Et[Zt+1]) ≈ Et[cξt+1 + aξt+1zt] + 0.5Et[σ2
ξt+1

], (IA74)

again using the approximation ln (1 + x) ≈ x, for x small.

Above we make use of the fact that zt+1 = cξt+1+aξt+1zt+σξt+1εt+1 is close to zero. But the

solution is always approximating around the steady-state values. The same approximation

holds even if zt+1 is not close zero. To see this, suppose z is the steady state of zt+1 and

z̃t+1 ≡ zt+1 − z is the log-deviation of Zt+1 from its mean. We then have

ezEt[ez̃t+1 ] = ezEt[Et[ez̃t+1|ξt+1]] (IA75)

= ezEt[eEt[z̃t+1|ξt+1]+0.5Vt[z̃t+1|ξt+1]] (IA76)

≈ ezEt[1 + Et[z̃t+1|ξt+1] + 0.5Vt[z̃t+1|ξt+1]] (IA77)

= ez[1 + Et[z̃t+1] + 0.5Et[σ2
ξt+1

]], (IA78)
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where we use the fact that Vt[z̃t+1|ξt+1]] = Vt[zt+1|ξt+1]]. Then

log (Et[Zt+1]) = log
(
ezEt[ez̃t+1 ]

)
(IA79)

≈ z + Et[z̃t+1] + 0.5Et[σ2
ξt+1

] (IA80)

= Et[zt+1] + 0.5Et[σ2
ξt+1

] (IA81)

= Et[cξt+1 + aξt+1zt] + 0.5Et[σ2
ξt+1

]. (IA82)

To see how the method works in our model, note that the above approximations hold

under the objective probability distribution in the model as well as under the distorted beliefs

Ept [·] , since in both cases the random variables are conditionally lognormal. Consider the

forward-looking relation for the price-payout ratio:

PD
t = Ept

[
Mt+1

(
PD
t+1 +Dt+1

)]
PD
t

Dt

= Ept
[
Mt+1

Dt+1

Dt

(
PD
t+1

Dt+1

+ 1

)]
.

Taking logs on both sides, we get

pdt = log [Ept [exp (mt+1 + ∆dt+1 + κ0 + κ1pdt+1)]] .

Applying the approximation implied by conditional lognormality, we have

pdt = κ0 + Ept [mt+1 + ∆dt+1 + κ1pdt+1] +

+.5Vp
t [mt+1 + ∆dt+1 + κ1pdt+1] ,

where under the conditional lognormality approximation we have

Vp
t [mt+1 + ∆dt+1 + κ1pdt+1] ≈ Ept [Vt [mt+1 + ∆dt+1 + κ1pdt+1|ξt+1]] .

XI. Estimating the Dynamic Macro-Finance Model
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As explained in Section VIII.D above, the macro block is put into state-space form and es-

timated using standard Bayesian methods. The solution of the macro block at the estimated

mode parameter values are then taken as inputs into the asset pricing block. To pin down

the parameters of the asset pricing block, we take the estimates for the macro block as given

and search for the parameters that minimize the distance between the data valuation ratio

−cayMS
t and its model implied counterpart, caymt . We also require the model to deliver an av-

erage annualized equity premium, er, of around 6%. Thus, we introduce a penalty for devia-

tions of the average annualized equity premium from the 6% target. The distance between the

two valuation ratios is defined as the sum of squared differences between the two ratios. Thus,

we search for the set of parameters θp = {k, σp, βp, lp, p11, p33, p23/(p23 + p24), p41/(p41 + p42)}

that minimizes the following objective function:

θ̂p = arg min
[∑T

t=1

(
cayMS

t − caymt
(
θp, X

T , ξT
))2

+ 0.05
(∣∣er (θp, XT , ξT

)
− 6
∣∣)] ,

where caymt and the annualized average equity premium er depend on the parameters of

the model, the data used in the macro block estimation XT , and the regime sequence in

our sample ξT . The path for the model-implied −caymt is computed based on the estimated

regime sequence and the estimated initial conditions. We thus ask the model to explain as

much of the observed variation in −cayMS
t out of regime changes as possible.

XII. Constructing the PDV of Expected Returns from the Model

Suppose that we want to build the PDV of a vector of variables Yt based on the model

solution, where Yt depends on S̃t according to the linear transformation

Yt = D + ZS̃t.

In doing this, the econometrician can use the transition matrix reflecting the actual frequency

of regime changes or the transition matrix used by the AP agent when forming expectations.

In the first case, we obtain the actual path of the PDV of excess returns based on the DGP,
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in the second case we obtain the PDV perceived by agents in the economy. For the main

results in the paper, we compute the PDV that an econometrician would find if the dynamic

macro model proposed in the paper generated the data. In this case we have∑∞
j=0 ρ

jEtYt+1+j =
∑∞

j=0 ρ
jEt
(
D + ZS̃t+1+j

)
= (1− ρ)−1D + Z

∑∞
j=0 ρ

jEt
(
S̃t+1+j

)
,

where we omit the superfix p on the expectation operator because the probability assigned

by the econometrician to moving across regimes is not in general the same as that implied by

the transition matrix used by the AP agent. The transition matrix H of the econometrician

coincides with what was estimated in the first part of the paper and differs from Hp and

Ĥp, the transition matrices that enter the solution of the asset pricing block. To use H in

the expanded regime space, we expand it to cover the same number of regimes and reflect

the probability of moving across them as implied by H. We denote this expanded transition

matrix consistent with the original transition matrix by Ĥ.

As above, define the column vectors qt and πt,

qt =
[
q1′

t , ..., q
m′
t

]′
, qit = E0

(
S̃t1ζt=i

)
, πt =

[
π1
t , ..., π

m
t

]′
,

where πit = P0 (ζ = i) and 1ζt=i is an indicator variable that is equal to one when regime i is

in place and zero otherwise. The law of motion for q̃t = [q′t, π
′
t]
′ is then given by[

qt
πt

]
︸ ︷︷ ︸

q̃t

=

[
Ω CĤ

Ĥ

]
︸ ︷︷ ︸

Ω̃

[
qt−1

πt−1

]
,

where πt = [π1,t, ..., πm,t]
′ , Ω = bdiag (A1, ..., Am) Ĥ, and C = bdiag (c1, ..., cm).

Similar formulas are used to compute risk premia for the individual portfolios. The

premium for a portfolio z coincides with the PDV of its excess returns,

premiaz,t︸ ︷︷ ︸
Premia

≡
∑∞

j=0 ρ
jEtrt+1+j︸ ︷︷ ︸

PDV of excess returns

= 1′rw (I − ρΩ)−1

[
Ωqt|t + C

(
I − ρĤ

)−1

Ĥπt|t

]
, (IA83)
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where 1′rz is a vector used to extract the PDV of excess returns from a vector containing the

PDV of all variables included in the VAR.

XIII. ZLB Robustness Checks for the Dynamic Macro Model

In this appendix, we conduct two robustness checks to verify that our results are not

distorted by the time spent at the zero lower bound (ZLB) in the aftermath of the financial

crisis. First, we reestimate our MS-DSGE model using the Wu-Xia (Wu and Xia (2016))

shadow rate. Second, we use the one-year Treasury yield instead of the FFR in our esti-

mation. The shadow rate is downloaded from Professor Wu’s website, while the one-year

Treasury yield is downloaded from FRED. The figures presented in this appendix show that

the main results of the paper are not affected by using these alternative measures for the

interest rate. The figures pertaining to these estimates are found in Figures IA.1 to IA.12.

In the Wu and Xia (2016) model, the short-term interest rate is the maximum of the

shadow FFR and the lower bound on interest rates. Wu and Xia set this lower bound to

25 basis points because that was the rate paid on both required and excess reserve balances

during the December 16, 2008 to December 15, 2015 period when the Federal Open Market

Committee (FOMC) set the target range for the FFR at 0 to 25 basis points. On December

16, 2015, the FOMC increased the rate paid on reserve balances to 50 basis points and the

target range for the FFR to 25 to 50 basis points. when the lower bound is no longer binding,

the shadow rate coincides with the actual FFR.

The results of Wu and Xia (2016) are based on a multivariate version of the shadow rate

term structure model (SRTSM) introduced by Black (1995). In the SRTSM, the observed

short-term rate is the maximum between a lower bound and the shadow rate. The shadow

rate, in turn, is an affine function of a vector of state variables that follow a VAR process.

Absent the lower bound, the model would be fully linear. Thus, the lower bound introduces

a nonlinearity in the mapping from the factors to the observed short-term interest rate.

The key idea behind the model and the work of Wu and Xia (2016) is that by observing the
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behavior of forward rates at different maturities, the researcher can back out a measure of the

shadow short term interest rate. In other words, forward rates reflect the overall monetary

policy stance and can be used to recover the implicit behavior of the shadow interest rate.

XIV. Inflation Target in the Early- and Late-Dovish Subperiods

This appendix shows that the early-dovish and late-dovish subperiods both rationalize a

high value for πTξt , but for different reasons.

To demonstrate this, we compute an alternative “third-regime” case of the model. The

third-regime case has the same regime sequence as the baseline case, but we reestimate the

model allowing the policy parameters to differ in all three regime subperiods. This third-

regime case implies that perceived trend inflation πt is 9.2% at the end of the post-millennial

subsample, which is higher than in the baseline two-regime case. Why? After all, observed

inflation is quite low at the end of our sample (almost zero) and had been trending down.

Perceived trend inflation is high at the end of our sample because the policy rule target

inflation parameter πTξt is high, about 11.5%, in the dovish regime. The parameter πt is

mechanically linked to πTξt because, in addition to forming expectations with an adaptive

rule, the macro agent receives a noisy signal about the inflation target πTξt . Since these

signals accumulate over time, πt will increasingly approach πTξt the longer a regime subperiod

lasts. Why is the inflation target high at the end of the sample? The policy rule parameter

πTξt that drives πt to be high at the end of the sample reflects the historical data we have

used to pin down inflation, inflation expectations, and GDP growth. The post-millennial

period is characterized by large negative demand shocks in the model (to account for the

two sharp recessions), subsequent sluggish economic growth, and sustained periods of low

and even negative inflation. At the same time, data on on inflation expectations, which the

model matches well, remain persistently high in relative terms throughout the post-millennial

period. Expected inflation as measured by the SOC survey remains above 3% at the end

of our sample in 2017:Q3 and was above 4% only a few years earlier. This set of facts is
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rationalized in the model by a central bank that changed objectives to implicitly implement

extremely dovish policy in the post-millennial period in order to counteract two recessions,

which in the stylized model of monetary policy shows up as a high value for target inflation,

πTξt . Had the implicit target not been this high, inflation expectations would have been lower

than implied by survey evidence.

This shows that, in the baseline two-regime case, the early-dovish and late-dovish subpe-

riods both rationalize a high value for πTξt , but for different reasons. In the early subperiod,

observed inflation and inflation expectations were commensurately high, which the model

rationalizes with a high value for πTξt . In the late subperiod actual inflation is quite low, but a

persistent gap opens up in between expected inflation and actual inflation, which the model

again rationalizes with a high value for πTξt . To verify that this gap between expected infla-

tion and actual inflation is indeed the source of the high value for πTξt in the post-millennial

dovish subperiod, we reestimated the third-regime model using only GDP growth, inflation,

and the FFR, while excluding inflation expectations. In this case the estimated value for πTξt

and πt at the end of our sample is much lower, with the latter only 1.2%.

64



REFERENCES

Bansal, Ravi, and Hao Zhou, 2002, Term structure of interest rates with regime shifts, The

Journal of Finance 57, 1997–2043.

Bianchi, Francesco, 2016, Methods for measuring expectations and uncertainty in Markov-

switching models, Journal of Econometrics 190, 79–99.

Bianchi, Francesco, and Leonardo Melosi, 2016, Modeling the evolution of expectations and

uncertainty in general equilibrium, International Economic Review 57, 717–756.

Black, Fischer, 1995, Interest rates as options, Journal of Finance 50, 1371–1376.

Costa, Osvaldo L.V., Marcelo D. Fragoso, and Ricardo P. Marques, 2004, Discrete-Time

Markov Jump Linear Systems (Springer, New York).

Evans, George W., and Seppo Honkapohja, 2001, Learning and Expectations In Macroeco-

nomics (Princeton University Press, Princeton, NJ).

Geweke, John F., 1992, Evaluating the accuracy of sampling-based approaches to the calcu-

lation of posterior moments, Bayesian Statistics 4, 169–193.

Hamilton, James D., 1994, Time Series Analysis (Princeton University Press, Princeton,

NJ).

Kim, Chang-Jin, and Charles R. Nelson, 1999, State-Space Models with Regime Switching

(The MIT Press, Cambridge, Massachusetts).

Raftery, Adrian E., and Steven M. Lewis, 1992, How many iterations in the Gibbs sampler?,

Bayesian Statistics 4, 763–773.

Sims, Christopher A., and Tao Zha, 2006, Were there regime switches in U.S. monetary

policy?, American Economic Review 91, 54–81.

Stock, James H., and Mark W. Watson, 1993, A simple estimator of cointegrating vectors

in higher order integrated systems, Econometrica 61, 783–820.

65



Wu, Jing C., and Fan D. Xia, 2016, Measuring the macroeconomic impact of monetary policy

at the zero lower bound, Journal of Money, Credit and Banking 48, 253–291.

66



1970 1980 1990 2000 2010

-5

0

5

10

GDP Growth

Model
Data

1970 1980 1990 2000 2010

-5

0

5

10

Inflation

Model
Data

1970 1980 1990 2000 2010

0

5

10

15

Shadow FFR

Model
Data

1970 1980 1990 2000 2010

2

4

6

8

10

12
Expected Inflation

Model
Data

Figure IA.1. Shadow rate estimates of the macro-finance model. The figure reports the model-implied series and the
corresponding observed series. Expected inflation comes from the Michigan Survey of Consumers. The difference is due to observation
errors. The sample spans 1961:Q1 to 2017:Q3. Results are based on estimates obtained replacing the FFR with the Wu-Xia (2016)
shadow rate when the ZLB is binding.
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Figure IA.2. Shadow rate estimates of the macro-finance model. The blue line corresponds to the fluctuations generated
by changes in both the target and the slope coefficients. The orange line assumes that monetary policy starts under the dovish
regime and no regime change occurs. Finally, the black dotted line assumes that changes in the target occurred, but that the slope
coefficients in the Taylor rule coefficients always remain as in the dovish-high target regime. Results are based on estimates obtained
replacing the FFR with the Wu-Xia (2016) shadow rate when the ZLB is binding.
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Figure IA.3. Shadow rate estimates of the macro-finance model. The Volcker disinflation. We start the economy as it was
in 1980:Q1 and remove all Gaussian shocks that occured after that period but keep the estimated regime sequence. The dashed line
corresponds to the data. The real interest rate is computed as the difference between the FFR and expected inflation. Expected
inflation is obtained based on the model solution. Results are based on estimates obtained replacing the FFR with the Wu-Xia (2016)
shadow rate when the ZLB is binding.
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Figure IA.4. Shadow rate estimates of the macro-finance model. Perfect information about the target. The blue solid line
shows estimated fluctuations generated only by changes in the policy rule (inflation target and slope coefficients) when agents learn
about trend inflation. The orange dashed line shows a counterfactual in which the policy rule shifts but agents observe the inflation
target. The dovish regime has a high target πT and low activism against deviations from the target πT . The hawkish regime has
a low πT and high activism against deviations from πT . The sample spans 1961:Q1 to 2017:Q3. Results are based on estimates
obtained replacing the FFR with the Wu-Xia (2016) shadow rate when the ZLB is binding.
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Figure IA.5. Shadow rate estimates of the macro-finance model. Top row: Curbing inflation. The economy is initially
in the dovish regime. The blue solid line presents the evolution of the macro variables in response to a two-standard-deviation
contractionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro variables in
response to a regime change from the dovish regime to the hawkish regime. Lower row: Lifting inflation. The economy is initially
in the hawkish regime. The blue solid line presents the evolution of the macro variables in response to a two-standard-deviation
expansionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro variables in
response to a regime change from the hawkish regime to the dovish regime. Results are based on estimates obtained replacing the
FFR with the Wu-Xia (2016) shadow rate when the ZLB is binding.
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Figure IA.6. Shadow rate estimates of the macro-finance model. Excess returns and policy rule changes. The figure reports
the time series of the present discounted value of expected excess returns for different portfolios (dashed line, right axis) together with
fluctuations of the real interest rate due to changes in the monetary policy rule (solid line, left axis). Results are based on estimates
obtained replacing the FFR with the Wu-Xia (2016) shadow rate when the ZLB is binding.
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Figure IA.7. One-year yield estimates of the macro-finance model. The figure reports the model-implied series and the
corresponding observed series. Expected inflation comes from the Michigan Survey of Consumers. The difference is due to observation
errors. The sample spans 1961:Q1 to 2017:Q3. Results are based on estimates obtained using the one-year Treasury yield instead of
the FFR.
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Figure IA.8. One-year yield estimates of the macro-finance model. The blue line corresponds to the fluctuations generated
by changes in both the target and the slope coefficients. The orange line assumes that monetary policy starts under the dovish
regime and no regime change occurs. Finally, the black dotted line assumes that changes in the target occurred, but that the slope
coefficients in the Taylor rule coefficients always remain as in the dovish-high target regime. Results are based on estimates obtained
using the one-year Treasury yield instead of the FFR.
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Figure IA.9. One-year yield estimates in the Volcker disinflation. We start the economy as it was in 1980:Q1 and remove
all Gaussian shocks that occured after that period but keep the estimated regime sequence. The dashed line corresponds to the data.
The real interest rate is computed as the difference between the FFR and expected inflation. Expected inflation is obtained based
on the model solution. Results are based on estimates obtained using the one-year Treasury yield instead of the FFR.
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Figure IA.10. One-year yield estimates of the macro-finance model. Perfect information about the target. The blue solid
line shows estimated fluctuations generated only by changes in the policy rule (inflation target and slope coefficients) when agents
learn about trend inflation. The orange dashed line shows a counterfactual in which the policy rule shifts but agents observe the
inflation target. The dovish regime has a high target πT and low activism against deviations from the target πT . The hawkish regime
has a low πT and high activism against deviations from πT . The sample spans 1961:Q1 to 2017:Q3. Results are based on estimates
obtained using the one-year Treasury yield instead of the FFR.
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Figure IA.11. One-year yield estimates of the macro-finance model. Top row: Curbing inflation. The economy is
initially in the dovish regime. The blue solid line presents the evolution of the macro variables in response to a two-standard-
deviation contractionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro
variables in response to a regime change from the dovish regime to the hawkish regime. Lower row: Lifting inflation. The
economy is initially in the hawkish regime. The blue solid line presents the evolution of the macro variables in response to a two-
standard-deviation expansionary monetary policy shock and no regime change. The black dashed line presents the evolution of the
macro variables in response to a regime change from the hawkish regime to the dovish regime. Results are based on estimates obtained
using the one-year Treasury yield instead of the FFR.
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Figure IA.12. One-year yield estimates of the macro-finance model. Excess returns and policy rule changes. The figure
reports the time series of the present discounted value of expected excess returns for different portfolios (dashed line, right axis)
together with fluctuations of the real interest rate due to changes in the monetary policy rule (solid line, left axis). Results are based
on estimates obtained using the one-year Treasury yield instead of the FFR.
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Figure IA.13. Distributuion of observation errors. The figure reports mean, median, and 90% error bands for the distribution of
observation errors over time.
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