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This Technical Appendix contains details relevant to the estimation results in �Macro
Factors in Bond Risk Premia.�

Small Sample Inference

According to the asymptotic theory for PCA estimation discussed in Section 2, het-
eroskedasticity and autocorrelation consistent standard errors that are asymptotically N(0; 1)
can be used to obtain robust t-statistics for the in-sample regressions studied in Section
5.1. Moreover, provided

p
T=N goes to zero as the sample increases, the bFt can be treated

as observed regressors, and the usual t-statistics are valid (Bai and Ng (2006)). To guard
against inadequacy of the asymptotic approximation in �nite samples, in this section consider
bootstrap inference for speci�cations using four regression models: (i) a model using just the
estimated factors in

�!
F5t as predictor variables, (ii) a model using the estimated factors in

�!
F5t

and CPt, (iii) a model using just the single linear combination of �ve estimated factors, F5t,
and (iv) a model using F5t and CPt: Small sample inference is especially important when the
right-hand-side variables are highly persistent (e.g., Bekaert, Hodrick, and Marshall (1997);
Stambaugh (1999); Ferson, Sarkissian, and Simin (2003)) but, as Table 1 demonstrates, none
of the factors from our preferred speci�cations are highly persistent. Nevertheless, we pro-
ceed with a bootstrap analysis as a robustness check, by generating bootstrap samples of the
exogenous predictors Zt (here just CPt), as well as of the estimated factors bFt:
Bootstrap samples of rx(n)t+1 are obtained in two ways, �rst by imposing the null hypothesis

of no predictability, and second, under the alternative that excess returns are forecastable by
the factors and conditioning variables studied above. The use of monthly bond price data
to construct continuously compounded annual returns induces an MA(12) error structure in
the annual log returns. Thus under the null hypothesis that the expectations hypothesis is
true, annual compound returns are forecastable up to an MA(12) error structure, but are
not forecastable by other predictor variables or additional moving average terms. Bootstrap
sampling that captures the serial dependence of the data is straightforward when, as in this
case, there is a parametric model for the dependence under the null hypothesis (Horowitz
(2003)). In this event, the bootstrap may be accomplished by drawing random samples
from the empirical distribution of the residuals of a

p
T consistent, asymptotically normal

estimator of the parametric model, in our application a twelfth-order moving average process.
We use this approach to form bootstrap samples of excess returns under the null. Under
the alternative, excess returns still have the MA(12) error structure induced by the use
of overlapping data, but estimated factors bFt are presumed to contain additional predictive
power for excess returns above and beyond that implied by the moving average error structure.
We take into account the pre-estimation of the factors by re-sampling the T � N panel

of data, xit. This creates bootstrapped samples of the factors themselves. For each i, least
squares estimation of beit = �ibeit�1+vit yields estimates b�i of the persistence of the idiosyncratic
errors and of the residuals bvit; t = 2; : : : T , where recall that beit = xit � b�0i bft. Then bvit is re-
sampled (while preserving the cross-section correlation structure) to yield bootstrap samples
of the idiosyncratic errors beit. Bootstrap samples are denoted eeit. In turn, bootstrap values of
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xit are constructed by adding the bootstrap estimates of the idiosyncratic errors, eeit, to b�0i bft.
Estimation by the method of principal components on the bootstrapped data then yields a
new set of estimated factors. The linear combination F5t is reestimated in each bootstrap
simulation. Together with bootstrap samples of Zt (also based on an AR(1) model), this
delivers a set of bootstrap regressors. Each regression using the bootstrapped data gives new
estimates of the regression coe¢ cients in and new �R2 statistics. This is repeated B times.
Bootstrap con�dence intervals for the parameter estimates and �R2 statistics are calculated
from B = 10; 000 replications. The results are reported in Tables 4a-4d for two-, three-, four-
and �ve-year excess bond returns, respectively.
Tables A1-A4 indicate that the results based on bootstrap inference are broadly consistent

with those based on asymptotic inference in Tables 2a-2d. Con�dence intervals from data
generated under the alternative are reported in the columns headed �bootstrap.�Con�dence
intervals from data generated under the null are reported in the columns headed �Bootstrap
under the null.�The coe¢ cients on the exogenous predictors and estimated factors are all
well outside the 95% con�dence interval under the no-predictability null. Moreover, the
coe¢ cients on factors that are statistically di¤erent from zero in Table 2a-2d have con�dence
intervals under the alternative that exclude zero, indicating statistical signi�cance at the 5
percent level. The exceptions to this are the two in�ation factors, which display con�dence
intervals under the alternative that contain zero for some speci�cations (as in the asymptotic
analysis). However, even these coe¢ cients are too large to be explained under the null of no
predictability, and the single linear combination of factors, F5t, is always strongly statistically
signi�cant regardless of which excess return is being forecast.
We also compute the small sample distribution of the R2 statistics. For two-year bond

returns, the �ve-factor model
�!
F5t generates an adjusted R-squared statistic of 22% in histor-

ical data; by contrast, using bootstrapped data, the 95% bootstrapped con�dence interval for
this statistic under the no-predictability null ranges from 1.4% to 1.9%. Similarly, the �ve
factors and CPt deliver an adjusted R-squared statistic of 45% in historical data; by contrast,
using bootstrapped data, the 95% bootstrapped con�dence interval for this statistic under
the no-predictability null ranges from just 2.3% to 4.3%. The results are similar for bonds
of other maturities. In short, the magnitude of predictability found in historical data is too
large to be accounted for by sampling error in samples of the size we currently have. The
statistical relation of the factors to future returns is evident, even accounting for the small
sample distribution of standard test statistics.

Out-of-Sample Inference With Recursively Chosen Factors

In this table, we compare the out of sample forecast errors of a restricted model which
includes only a constant with that of an unrestricted model which re-selects the set of forecast-
ing factors bFt in each out-of-sample period. The re-selection procedure works as follows. Let s
denote the current out-of-sample period. The set of factors fftgst=1 is reestimated using prin-
cipal components on data up to s. The optimal subset of forecasting factors at time s, denoted
fF st gs�1t=1 � fftgs�1t=1 , is the set that minimizes the BIC in the regression rx

(n)
t = a+Xs

t�1b+ �t
over all possible subsets that include linear, squared and cubed terms in the factors. Thus,
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both the identities and dimension of fFtgst=1 change at each out-of-sample estimation period,
s. Note that the observations on F st run from t = 1 to t = s � 1, since factors are lagged
one period to predict excess returns. The optimal set of factors fF st gst=1, and corresponding
estimates (ba;bb) are used to forecast the (s+ 1)th observation of rx(n).
As above, the out-of-sample performance of the factors is assessed by comparing, MSEu,

the mean-squared forecasting error of the unrestricted model including predictor factors, with
MSEr, the mean-squared forecasting error of the restricted benchmark (null) model based
on constant expected returns. The only di¤erence in this case is that the factors are not held
�xed throughout the exercise, but are instead chosen in each out-of-sample recursion using
the BIC criterion. Otherwise, the procedure here is identical to that described above for
assessing the out-of-sample forecasting power of

�!
F5t. In the column labeled �MSEu=MSEr�

of Table A.5, a number less than one indicates that the model with the predictor factors has
lower forecast error than a benchmark constant expected returns model.
To assess the statistical signi�cance of the out-of-sample forecasting power of the recur-

sively chosen factors, the column labeled �ENC-t�in Table 3 reports the ENC-t test statistic
of Clark and McCracken (2001) for the null hypothesis that the benchmark constant expected
excess returns model encompasses the unrestricted model with additional predictors. The al-
ternative is that the unrestricted model contains information that could be used to improve
the benchmark model�s forecast. �95% BS CV�gives the 95th percentile of the bootstrap
distribution of the ENC-t test statistic. The bootstrap procedure assesses the small sam-
ple distribution of ENC-t under the null hypothesis that expected excess bond returns are
constant. This is implemented by simulating data under the null that the expectations hy-
pothesis holds (see the Appendix for details). In each bootstrap simulation, we simulate data
under the null, re-estimate all the factors, go through the BIC factor selection procedure and
forecasting exercise, and compute the ENC-t statistic. We then repeat this N times (where
N = 1000) and tabulate critical values from the set of simulated ENC-t statistics. We use the
ENC-t statistic rather than the ENC-NEW statistic here because Clark and McCracken �nd
that the distribution of the ENC-t statistic is less sensitive than is ENC-NEW to variation
in the number of forecasting variables over time. Under the null that the benchmark model
is true, the ENC-t statistic will be less than or equal to zero. Under the alternative that the
additional predictors contain added information, the ENC-t test should be positive. Hence,
the ENC-t test is one-sided, and a su¢ ciently large value of the test statistic indicates a
rejection of the null. We calculate the small sample distribution of the ENC-t statistic using
a bootstrap under the null of no predictability in excess returns.
For the bootstrap, the new panel of data fromwhich the factors are estimated is created the

same way as in tables A.1-A.4, re-sampling from the T �N panel of data, xit, and estimating
the factors by principal components. Estimation by the method of principal components on
the bootstrapped data then yields a new set of estimated factors which we use in our BIC
optimizing procedure described above.
In each bootstrap simulation we draw randomly with replacement from the residuals of

an AR(12) process for the one-year bond yield:

4



y
(1)
t = a0 + a1y

(1)
t�1=12 + � � �+ a12y

(1)
t�1 + �t (1)

We estimate this equation and draw with replacement b�t to create a new sequence fey(1)t g:
To impose the null of no predictability in excess returns, we create longer holding period

returns from the one-year yield imposing the Expectations Hypothesis, which requires that
long yields are the average of expected future one-year yields over the life of the bond:

y
(n)
t =

1

n
Et[

nX
i=1

y
(1)
t+i�1]: (2)

This is implemented following the recursive procedure in the Appendix to Cochrane and
Piazzesi (2005). First we de�ne xt = [y

(1)
t ; y

(1)
t�1=12; : : : ; y

(1)
t�11=12]

0, and e1 = [1; 0; : : : ; 0]. Note

that e1xt = y
(1)
t . From this de�nition of xt, we can write xt+1=12 = [y

(1)
t+1=12; y

(1)
t ; : : : ; y

(1)
t�10=12]

0

as:

xt+1=12 = B0 +B1xt + �ut+1=12

Where: B0 =
�
a0
0

�
B1 =

�
a1 : : : a12
I11x11 011x1

�
� =

�
1 01x11
011x11 011x1

�
:

So, Et[xt+1=12] = B0 +B1xt, which we can write more generally as

Et[xt+k=12] = (
k�1X
i=0

Bi1)B0 +B
k
1xt

by de�ning B01 = I12x12.
Then,

Et[y
(1)
t+k=12] = e1((

k�1X
i=0

Bi1)B0 +B
k
1xt)

Let k = 12n. For n = 1; 2; : : : ; k = 12; 24; : : : we can write this as:

Et[y
(1)
t+n] = e1

  
12n�1X
i=0

Bi1

!
B0 +B

12n
1 xt

!
; n = 1; 2; : : : (3)

If we have y(n�1)t , then, using (2),

y
(n)
t = 1

n
Et[
Pn

i=1 y
(1)
t+i�1]

= 1
n
Et[
PN�1

i=1 y
(1)
t+i�1] +

1
n
Et[y

(1)
t+n�1]

= n�1
n
y
(n�1)
t + 1

n
Et[y

(1)
t+n�1]
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Using our formula (3) above, longer maturity yields can be computed recursively from

y
(n)
t =

n� 1
n

y
(n�1)
t +

1

n
e1

0@0@12(n�1)�1X
i=0

Bi1

1AB0 +B12(n�1)1 xt

1A (4)

Equation (4) is used to compute a new sequence of yields fey(n)t g; n = 2; : : : ; 5, which are
then converted to prices by ep(n)t = �ney(n)t , and �nally to holding period excess returns withfrx(n)t+1 = ep(n�1)t+1 � ep(n)t + ep(1)t :
We repeat this procedure 500 times and report the 90th and 95th percentiles of our ENC-t

test statistic. Under the null that the restricted (benchmark) constant expected returns model
forecast encompasses the model with factors, the ENC-t statistic should be less than or equal
to zero. Under the alternative that model with factors adds information, the covariance
should be positive. Hence the ENC-t test is one sided.
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Table A1: Small Sample Inference, rx(2)t+1

Model: rx(2)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CIbF1t -0.935 ( -1.389 -0.474) ( -1.333 -0.538) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.062 ( 0.023 0.102) ( 0.031 0.094) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.177 ( -0.043 0.413) ( -0.009 0.371) ( -0.003 0.003) ( -0.003 0.003)bF4t -0.334 ( -0.533 -0.137) ( -0.494 -0.182) ( -0.004 0.003) ( -0.003 0.002)bF8t 0.352 ( 0.141 0.542) ( 0.184 0.511) ( -0.007 0.008) ( -0.007 0.007)
R2 0.225 ( 0.123 0.400) ( 0.139 0.381) ( 0.014 0.019) ( 0.015 0.018)
�R2 0.217 ( 0.113 0.393) ( 0.130 0.375) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(2)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CIbF1t -0.745 ( -1.141 -0.325) ( -1.075 -0.401) ( -0.025 -0.016) ( -0.024 -0.017)bF 31t 0.055 ( 0.020 0.091) ( 0.026 0.083) ( 0.000 0.001) ( 0.000 0.001)bF3t 0.237 ( 0.010 0.459) ( 0.046 0.412) ( -0.004 0.004) ( -0.003 0.003)bF4t -0.247 ( -0.450 -0.055) ( -0.389 -0.099) ( -0.005 0.003) ( -0.004 0.002)bF8t 0.244 ( 0.065 0.424) ( 0.095 0.394) ( -0.007 0.008) ( -0.006 0.007)
CPt 0.395 ( 0.262 0.519) ( 0.283 0.498) ( 0.004 0.012) ( 0.005 0.011)
R2 0.455 ( 0.245 0.548) ( 0.268 0.524) ( 0.022 0.047) ( 0.023 0.043)
�R2 0.448 ( 0.235 0.542) ( 0.258 0.518) ( 0.009 0.034) ( 0.010 0.031)

Model: rx(2)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
F5t 0.539 ( 0.304 0.758) ( 0.356 0.729) ( 0.008 0.011) ( 0.008 0.011)
R2 0.221 ( 0.084 0.384) ( 0.111 0.368) ( 0.008 0.015) ( 0.009 0.014)
�R2 0.219 ( 0.082 0.383) ( 0.109 0.367) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(2)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
F5t 0.427 ( 0.216 0.626) ( 0.252 0.601) ( 0.007 0.012) ( 0.007 0.012)
CPt 0.389 ( 0.255 0.516) ( 0.273 0.493) ( 0.004 0.011) ( 0.005 0.011)
R2 0.447 ( 0.215 0.530) ( 0.240 0.506) ( 0.017 0.041) ( 0.019 0.038)
�R2 0.444 ( 0.211 0.528) ( 0.237 0.504) ( 0.013 0.037) ( 0.014 0.034)

Notes: See next page.



Notes: Let xit denote the regressor variables used to predict rx
(n)
t+1, including a constant, and letX denote

the T �K vector of such variables, where K is the number of predictors. Let zit; i = 1; : : : N; t = 1; : : : T be

standardized data from which the factors are extracted. The vector of factors,
�!
F5t =

� bF1t; bF 31t; bF2t; bF3t; bF4t; bF8t�0 �
ft; F5t is the single linear combination of these factors formed by regressing the average (across maturity)

of excess bond returns on
�!
F5t.

�!
F5t � ft, where ft is a r � 1 vector of latent common factors. Denote�!

F5t = Ft: By de�nition, zit = �0ift + uit. Let b�i and bft be the principal components estimators of �i and
ft, and let buit be the estimated idiosyncratic errors. For each i = 1; : : : N , we estimate an AR(1) modelbuit = �ibuit�1 + wit. Let eu1;: = u1;:. For t = 2; : : : T , let euit = b�ieuit�1 + ewit, where ewi;t is sampled (with
replacement) from bw:;t; t = 2; : : : T . Then ezit = b�0i bft+ euit. Estimation by principal components on the data ez
yields eft and therefore eFt � eft. The remaining regressor, CPt, is obtained by �rst estimating an AR(1), and
then resampling the residuals of the autoregression. Denote the dependent variable rx(n)t+1 as ey: Unrestricted
samples eyt are generated as ey = eXb� + ee, where b� are the least squares estimates reported in column 2, and ee
are resampled from least squares MA(12) residuals, and eX is a set of bootstrapped regressors with bFt replaced
by eFt. Samples under the null are generated as ey = �y + ee0, where ee0 is resampled form the residuals of least

squares estimated MA(12) process.



Table A2: Small Sample Inference, rx(3)t+1

Model: rx(3)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 99% CI 95% CI 99% CIbF1t -1.589 ( -2.547 -0.713) ( -2.356 -0.882) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.114 ( 0.045 0.185) ( 0.058 0.173) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.185 ( -0.251 0.679) ( -0.175 0.560) ( -0.004 0.003) ( -0.003 0.002)bF4t -0.530 ( -0.933 -0.127) ( -0.849 -0.210) ( -0.004 0.003) ( -0.003 0.002)bF8t 0.645 ( 0.259 1.029) ( 0.319 0.969) ( -0.008 0.008) ( -0.006 0.008)
R2 0.189 ( 0.089 0.377) ( 0.103 0.342) ( 0.014 0.019) ( 0.015 0.018)
�R2 0.180 ( 0.079 0.370) ( 0.093 0.335) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(3)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CIbF1t -1.223 ( -2.015 -0.431) ( -1.875 -0.545) ( -0.033 -0.021) ( -0.032 -0.022)bF 31t 0.100 ( 0.035 0.162) ( 0.045 0.152) ( 0.000 0.002) ( 0.001 0.001)bF3t 0.300 ( -0.132 0.753) ( -0.047 0.667) ( -0.004 0.004) ( -0.004 0.003)bF4t -0.361 ( -0.702 0.018) ( -0.632 -0.058) ( -0.005 0.003) ( -0.004 0.002)bF8t 0.436 ( 0.113 0.774) ( 0.155 0.718) ( -0.008 0.010) ( -0.007 0.008)
CPt 0.764 ( 0.525 0.982) ( 0.556 0.941) ( 0.005 0.015) ( 0.006 0.014)
R2 0.446 ( 0.227 0.539) ( 0.249 0.522) ( 0.021 0.042) ( 0.022 0.040)
�R2 0.439 ( 0.217 0.533) ( 0.239 0.516) ( 0.008 0.030) ( 0.009 0.028)

Model: rx(3)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
F5t 0.911 ( 0.473 1.376 ) ( 0.560 1.285) ( 0.008 0.011) ( 0.008 0.011)
R2 0.189 ( 0.055 0.367) ( 0.076 0.335) ( 0.009 0.015) ( 0.009 0.014)
�R2 0.187 ( 0.053 0.366) ( 0.074 0.334) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(3)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
F5t 0.694 ( 0.278 1.087) ( 0.338 1.026) ( 0.007 0.012) ( 0.007 0.012)
CPt 0.754 ( 0.504 0.971) ( 0.546 0.938) ( 0.004 0.011) ( 0.005 0.010)
R2 0.442 ( 0.203 0.521) ( 0.226 0.495) ( 0.017 0.040) ( 0.018 0.037)
�R2 0.440 ( 0.199 0.519) ( 0.223 0.493) ( 0.013 0.035) ( 0.014 0.033)

Notes: See Table A1.



Table A3: Small Sample Inference, rx(4)t+1

Model: rx(4)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 99% CI 95% CI 99% CIbF1t -2.046 ( -3.281 -0.917) ( -3.155 -1.090) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.157 ( 0.062 0.261) ( 0.078 0.240) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.183 ( -0.442 0.826) ( -0.293 0.721) ( -0.003 0.003) ( -0.003 0.002)bF4t -0.625 ( -1.165 -0.086) ( -1.076 -0.180) ( -0.004 0.003) ( -0.003 0.002)bF8t 0.948 ( 0.433 1.462) ( 0.506 1.389) ( -0.007 0.008) ( -0.006 0.007)
R2 0.167 ( 0.084 0.357) ( 0.098 0.331) ( 0.015 0.019) ( 0.015 0.018)
�R2 0.158 ( 0.074 0.350) ( 0.088 0.324) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(4)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CIbF1t -1.506 ( -2.518 -0.440) ( -2.338 -0.640) ( -0.045 -0.029) ( -0.042 -0.030)bF 31t 0.136 ( 0.052 0.222) ( 0.064 0.208) ( 0.001 0.002) ( 0.001 0.002)bF3t 0.353 ( -0.215 0.923) ( -0.104 0.805) ( -0.007 0.005) ( -0.006 0.004)bF4t -0.375 ( -0.849 0.131) ( -0.754 0.002) ( -0.006 0.004) ( -0.005 0.003)bF8t 0.640 ( 0.166 1.105) ( 0.244 1.027) ( -0.008 0.010) ( -0.007 0.008)
CPt 1.128 ( 0.789 1.447) ( 0.846 1.386) ( 0.008 0.019) ( 0.008 0.018)
R2 0.459 ( 0.254 0.560) ( 0.278 0.537) ( 0.021 0.041) ( 0.022 0.039)
�R2 0.452 ( 0.244 0.554) ( 0.269 0.530) ( 0.008 0.029) ( 0.009 0.027)

Model: rx(4)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
F5t 1.188 ( 0.660 1.784) ( 0.735 1.713) ( 0.008 0.011) ( 0.008 0.011)
R2 0.167 ( 0.053 0.343) ( 0.071 0.316) ( 0.008 0.015) ( 0.009 0.014)
�R2 0.165 ( 0.051 0.342) ( 0.069 0.315) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(4)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
c 0.033 ( -1.321 1.274) ( -0.163 0.623) ( 0.466 0.479) ( 0.467 0.478)
F5t 1.188 ( 0.660 1.784 ) ( -1.075 -0.401) ( -0.025 -0.016) ( -0.024 -0.017)
CPt 0.395 ( 0.262 0.519) ( 0.283 0.498) ( 0.004 0.012) ( 0.005 0.011)
R2 0.455 ( 0.245 0.548) ( 0.268 0.524) ( 0.022 0.047) ( 0.023 0.043)
�R2 0.448 ( 0.235 0.542) ( 0.258 0.518) ( 0.009 0.034) ( 0.010 0.031)

Notes: See Table A1.



Table A4: Small Sample Inference, rx(5)t+1

Model: rx(5)t+1 = �0 + �
0
1

�!
F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 99% CI 95% CI 99% CIbF1t -2.271 ( -3.822 -0.735) ( -3.513 -1.023) ( -0.022 -0.020) ( -0.022 -0.020)bF 31t 0.179 ( 0.056 0.295) ( 0.078 0.280) ( 0.001 0.001) ( 0.001 0.001)bF3t 0.182 ( -0.612 0.929) ( -0.444 0.790) ( -0.003 0.003) ( -0.003 0.002)bF4t -0.782 ( -1.445 -0.125) ( -1.329 -0.269) ( -0.004 0.003) ( -0.003 0.002)bF8t 1.129 ( 0.481 1.841) ( 0.598 1.700) ( -0.008 0.008) ( -0.007 0.007)
R2 0.147 ( 0.069 0.315) ( 0.078 0.294) ( 0.014 0.019) ( 0.015 0.019)
�R2 0.138 ( 0.059 0.308) ( 0.068 0.286) ( 0.004 0.008) ( 0.004 0.008)

Model: rx(5)t+1 = �0 + �
0
1

�!
F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CIbF1t -1.629 ( -2.914 -0.185) ( -2.638 -0.368) ( -0.049 -0.032) ( -0.047 -0.033)bF 31t 0.154 ( 0.040 0.264) ( 0.057 0.247) ( 0.001 0.002) ( 0.001 0.002)bF3t 0.384 ( -0.404 1.112) ( -0.236 0.978) ( -0.007 0.005) ( -0.006 0.004)bF4t -0.485 ( -1.116 0.133) ( -1.025 0.017) ( -0.007 0.005) ( -0.006 0.004)bF8t 0.764 ( 0.145 1.351) ( 0.242 1.282) ( -0.010 0.012) ( -0.009 0.010)
CPt 1.341 ( 0.922 1.711) ( 0.993 1.645) ( 0.009 0.022) ( 0.009 0.021)
R2 0.421 ( 0.213 0.514) ( 0.242 0.492) ( 0.020 0.040) ( 0.021 0.038)
�R2 0.414 ( 0.203 0.508) ( 0.232 0.485) ( 0.007 0.028) ( 0.008 0.026)

Model: rx(5)t+1 = �0 + �
0
1F5t + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
c -0.145 ( -1.940 1.457) ( -1.725 1.238) ( 0.470 0.473) ( 0.470 0.472)
F5t 1.362 ( 0.596 2.087) ( 0.756 2.001) ( 0.008 0.011) ( 0.008 0.011)
R2 0.146 ( 0.027 0.303) ( 0.046 0.287) ( 0.008 0.015) ( 0.009 0.014)
�R2 0.145 ( 0.025 0.301) ( 0.044 0.286) ( 0.006 0.013) ( 0.007 0.012)

Model: rx(5)t+1 = �0 + �
0
1F5t + �2CPt + �t+1

Bootstrap Bootstrap under the null
xt b� 95% CI 90% CI 95% CI 90% CI
F5t -0.745 ( -1.141 -0.325) ( -1.075 -0.401) ( -0.025 -0.016) ( -0.024 -0.017)
CPt 0.395 ( 0.262 0.519) ( 0.283 0.498) ( 0.004 0.012) ( 0.005 0.011)
R2 0.455 ( 0.245 0.548) ( 0.268 0.524) ( 0.022 0.047) ( 0.023 0.043)
�R2 0.448 ( 0.235 0.542) ( 0.258 0.518) ( 0.009 0.034) ( 0.010 0.031)



Notes: See Table A1.
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Table A5: Out-of-Sample Predictive Power of Re-Optimized Factors

Row Forecast Sample Comparison MSEu=MSEr ENC-t 90% BS CV 95% BS CV
rx

(2)
t+1

1 1985:1-2003:12 Factors v.s. const 0.853 5.8680 2.529 3.4425
2 1995:1-2003:12 Factors v.s. const 0.929 4.0447 2.6016 3.2024

rx
(3)
t+1

5 1985:1-2003:2 Factors v.s. const 0.887 5.3203 2.5535 3.4685
6 1995:1-2003:2 Factors v.s. const 0.894 3.6012 2.6064 3.1744

rx
(4)
t+1

9 1985:1-2003:12 Factors v.s. const 0.908 5.0183 2.5561 3.4866
10 1995:1-2003:12 Factors v.s. const 0.922 3.3095 2.6032 3.183

rx
(5)
t+1

13 1985:1-2003:12 Factors v.s. const 0.939 4.4705 2.5573 3.4802
14 1995:1-2003:12 Factors v.s. const 0.940 3.0043 2.6039 3.1785

Notes: See next page.



Notes: Let xit denote the regressor variables used to predict rx
(n)
t+1, including a constant, and let X de-

note the T�K vector of such variables, whereK is the number of predictors. Let zit; i = 1; : : : N; t = 1; : : : T

be standardized data from which the factors are extracted. MSEu is the mean-squared forecasting error
of the unrestricted model with factors as predictor variables; MSEr is the mean-squared forecasting error
of the restricted benchmark model that includes only a constant. In the column labeled �MSEu=MSEr�,
a number less than one indicates that the unrestricted model has lower forecast error than the benchmark

constant expected returns model. The �rst row of each panel displays results in which the parameters and

factors were estimated recursively, using an initial sample of data from 1964:1 through 1984:12. The fore-

casting regressions are run for t =1964:1,...,1984:12 (dependent variables from 1964:1-1983:12, independent

variable from 1965:1-1984:12), and the values of the regressors at t =1984:12 are used to forecast annual
returns for 1975:1-1975:12. All parameters and factors are then reestimated from 1964:1 through 1985:1,

and forecasts are recomputed for returns in 1985:2-1986:1, and so on, until the �nal out-of-sample forecast is

made for returns in 2003:12. The same procedure is used to compute results reported in the second row, where

the initial estimation period is t =1964:1,...,1994:12. In each forecast period the vector of predictor factors,bFt� bft is chosen according to the BIC criterion, where ft is a r � 1 vector of latent common factors. The
column labeled �Test Statistic�reports the ENC-t test statistic of Clark and McCracken (2001) for the null
hypothesis that the benchmark model encompasses the unrestricted model with additional predictors. The

alternative is that the unrestricted model contains information that could be used to improve the benchmark

model�s forecast. �90% bootstrap CV�and �95% BS CV�give the 90th and 95th percentile of the bootstrap

distribution of the test statistic. The null is rejected if ENC-t exceeds the critical value. The bootstrap is
conducted as follows. By de�nition, zit = �

0
ift + uit. Let b�i and bft be the principal components estimators

of �i and ft, and let buit be the estimated idiosyncratic errors. For each i = 1; : : : N , we estimate an AR(1)
model buit = �ibuit�1 + wit. Let eu1;: = u1;:. For t = 2; : : : T , let euit = b�ieuit�1 + ewit, where ewi;t is sampled
(with replacement) from bw:;t; t = 2; : : : T . Then ezit = b�0i bft + euit. Estimation by principal components on
the data ez yields eft and therefore eFt � eft. Samples under the null are generated imposing the Expectations
Hypothesis starting from an AR(12) for the one-period yield and resampling the residuals from this model.

Longer-yields are computed recursively as in the Appendix to Cocharane and Piazzesi (2005). Samples of

rx
(n)
t+1 under the null are computed directly from the these longer yields computed under the Expectations

Hypothesis.
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