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This Internet Appendix provides a number of additional findings, along with detailed
information on our data and estimation procedure. Section I describes our data sources
and data construction. Section II describes a stylized model of asset owners and workers.
Section III presents a parametric example of conditions under which longer-horizon risk
exposures more accurately measure short-horizon exposures in finite samples. Sections IV
and V describe our GMM estimation and bootstrap procedures. Section VI reports additional
results.

I. Data Description

A. CONSUMPTION
Consumption is measured as expenditures on nondurables and services, excluding shoes

and clothing. The quarterly data are seasonally adjusted at annual rates, in billions of
chain-weighted 2005 dollars. The components are chain-weighted together, and this series
is scaled up so that the sample mean matches the sample mean of total personal consump-
tion expenditures. Our source is the U.S. Department of Commerce, Bureau of Economic
Analysis.
B. LABOR SHARE
We use nonfarm business sector labor share throughout the paper. For the nonfarm

business sector, the methodology is summarized in Gomme and Rupert (2004). Labor
share is measured as labor compensation divided by value added. Labor compensation
is computed as Compensation of Employees - Government Wages and Salaries - Com-
pensation of Employees of Nonprofit Institutions - Private Compensation (Households) -
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Farm Compensation of Employees - Housing Compensation of Employees - Imputed La-
bor Compensation of Self-Employed. Value added is computed as Compensation of Em-
ployees + Corporate Profits + Rental Income + Net Interest Income + Proprietors’ In-
come + Indirect Taxes Less Subsidies + Depreciation. The quarterly, seasonally adjusted
data span from 1963:Q3 to 2013:Q4 with index 2009=100. Our source is the Bureau
of Labor Statistics. The quarterly labor share level can be found from the data set at
https://www.bls.gov/lpc/special_requests/msp_dataset.zip.
C. QUARTERLY RETURNS
The return in quarter Q of year Y , denoted RQ,Y , is the compounded monthly return

over the three months in the quarter, m1,...,m3,

1 +RQ,Y =

(
1 +

Rm1
Q,Y

100

)(
1 +

Rm2
Q,Y

100

)(
1 +

Rm3
Q,Y

100

)
.

As test portfolios, we use the excess return constructed by subtracting the quarterly three-
month Treasury bill rate from the above. The sample spans from 1963Q1 to 2013Q4.
D. FAMA-FRENCH (1993) PRICING FACTORS
We obtain quarterly Fama-French (1993) pricing factors HML, SMB, and Rm, as well

as risk-free rates from professor French’s online data library.1 The sample spans 1963:Q3 to
2013:Q4.
E. LEVERAGE FACTOR
The broker-dealer leverage factor LevFac is constructed as follows. Broker-dealer (BD)

leverage is defined as

LeverageBDt =
Total Financial AssetsBDt

Total Financial AssetsBDt − Total LiabilitiesBDt
.

The leverage factor is constructed as seasonally adjusted log changes in LeverageBDt

LevFact =
[
∆ log

(
LeverageBDt

)]SA
.

This variable is available from Tyler Muir’s website over the sample period used in Adrian,
Etula, and Muir (2014), that is 1968:Q1 to 2009:Q4.2 In this paper we use the larger
sample 1963:Q3 to 2013:Q4. There are no negative observations on broker-dealer leverage
in this sample. To extend the sample to 1963:Q3 to 2013:Q4 we use the original data

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Benchmark_Factors_Quarterly.zip.
2http://faculty.som.yale.edu/tylermuir/LEVERAGEFACTORDATA_001.txt.
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on the total financial asset and liability of brokers and dealers data from flow of funds
Table L.128.3 Adrian, Etula, and Muir (2014) seasonally adjust ∆ log

(
LeverageBDt

)
by

computing an expanding window regression of ∆ log
(
LeverageBDt

)
on dummies for three of

the four quarters in the year at each date using the data up to that date. The initial series
1968Q1 uses data from the previous 10 quarters in their sample and samples expand by
recursively adding one observation to the end. Thus, the residual from this regression over
the first subsample window 1965:Q3 to 1968:Q1 is taken as the observation for LevFac68:Q1.
An observation is added to the end and the process is repeated to obtain LevFac68:Q2,
and so on. We follow the same procedure (starting with the same initial window 1965:Q3
to 1968:Q1) to extend the sample forward to 2013Q4. To extend backwards to 1963:Q1,
we take data on ∆ log

(
LeverageBDt

)
from 1963:Q1 to 1967:Q4 and regress on dummies

for three of four quarters and take the residuals of this regression as the observations on
LevFact for t =1963:Q1 to 1967:Q4. Using this procedure, we exactly reproduce the series
available on Tyler Muir’s website for the overlapping subsample 1968:Q1 to 2009:Q4, with
the exception of a few observations in the 1970s, a discrepancy that we cannot explain. To
make the observations we use identical for the overlapping sample, we simply replace these
few observations with those available on Tyler Muir’s website.
F. HOUSEHOLD STOCK MARKET WEALTH
We obtain stock market wealth data from two sources. The first is the triennial Survey of

Consumer Finance (SCF) conducted by Board of Governors of the Federal Reserve System
from 1989 to 2013. Stock Wealth includes both direct and indirect holdings of public stock.
Stock wealth for each household is calculated according to the construction in SCF, which is
the sum of the following items: 1). directly-held stock, 2). stock mutual funds: full value if
described as stock mutual fund, half value of combination mutual funds, 3). IRAs/Keoghs in-
vested in stock: full value if mostly invested in stock, half value if split between stocks/bonds
or stocks/money market, 4). other managed assets with equity interest (annuities, trusts,
MIAs): full value if mostly invested in stock, half value if split between stocks/MFs &
bonds/CDs, or "mixed/diversified," one-third value if "other" stocks/bonds/money market,
5). thrift-type retirement accounts invested in stock full value if mostly invested in stock, half
value if split between stocks and interest-earning assets, and 6). savings accounts classified as
529 or other accounts that may be invested in stocks. Households with nonzero/nonmissing
stock wealth by any of the above are counted as a stockowner. All stock wealth values are

3http://www.federalreserve.gov/apps/fof/DisplayTable.aspx?t=l.128.
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in real terms adjusted to 2013 dollars. All summary statistics (mean, median, participation
rate, etc.) are computed using SCF weights. In particular, in the original data, to minimize
the measurement error, each household has five imputations. We follow the exact method
suggested on the SCF website and compute the desired statistic separately for each implicate
using the sample weight (X42001). The final point estimate is given by the average of the
estimates for the five implicates.
Our second source is the Saez-Zucman (SZ) data on wealth inequality based on cap-

italized income tax data, available at http://gabriel-zucman.eu/uswealth/. The SZ data
provide estimates of the distribution of wealth and income for all households but do not
isolate the distributions for stockholders. To do so, we first download the replication pack-
age at http://gabriel-zucman.eu/files/uswealth/SZreplic.zip along with the yearly public-use
micro-files available at NBER at http://users.nber.org/~taxsim/gdb/. Following SZ, we sup-
plement this data set using the internal-use Statistics of Income (SOI) individual tax return
sample files from 1979 onward. We define stockholders to be individuals with nonzero div-
idends (divinc) and/or nonzero realized capital gains (kginc). Next, we follow the “mixed”
method of capitalizing income from dividends and capital gains proposed by SZ. Specifically,
when ranking households into wealth groups, only dividends (divinc) are capitalized. Thus,
if in 2000 the ratio of equities to the sum of dividend income reported on tax returns is
54, then a family’s ranking in the wealth distribution is determined by taking its dividend
income and multiplying by 54. By contrast, when computing the stock wealth of each per-
centile group, both dividends and capital gains are capitalized. Thus, if in 2000 the ratio
of equities to the sum of dividend and capital gain income reported on tax returns is 10, a
household’s equity wealth for that year is captured by multiplying it’s dividend and capital
gains income by 10. The purpose of this mixed method given by SZ is to smooth realized
capital gains and not overstate the concentration of wealth. We apply linear interpolation
for the data points in 1963 and 1965 that are missing in the NBER data set.
G. HOUSEHOLD INCOME DATA
We obtain household income data from two sources. The first is the SCF from period

1989 to 2013. We define total income as reported on the SCF as Y i
t = Y L

i,t + Y c
i,t + Y o

i,t. The

mimicking factors for the income shares is computed by taking the fitted values Ŷ i
t /Yt from

regressions of Y i
t /Yt on (1− LSt) to obtain quarterly observations extending over the larger

sample for which data on LSt are available. All income is adjusted relative to 2013 dollars.
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Throughout the paper, we define labor income as

Y L
i,t ≡ wagei,t + LSt × sei,t,

where wagei,t is the labor wage at time t, sei,t is the income from self-employment at time
t, and LSt is the labor share at time t.
Similarly, we define capital income

Y c
i,t ≡ sei,t + inti,t + div i,t + cgi,t + pensioni,t,

where inti,t is taxable and tax-exempt interest, div is dividends, cg is realized capital gains
and pensioni,t is pensions and withdrawals from retirement accounts.
Other income is defined as

Y o
i,t ≡ govi,t + ssi,t + almi,t + othersi,t,

where govi,t is food stamps and other related support programs provided by government, ssi,t
is social security, almi,t is alimony and other support payments, and othersi,t is miscellaneous
sources of income for all members of the primary economic unit in the household.
The second source is Saez-Zucman; see http://gabriel-zucman.eu/uswealth/. Similar

to the wealth data, the SZ data provide estimates of the distribution of income for all
households but do not isolate the distributions for stockholders. To do so, we first download
the replication package at http://gabriel-zucman.eu/files/uswealth/SZreplic.zip along with
yearly public-use micro-files available at the NBER at http://users.nber.org/~taxsim/gdb/
and supplement this data set using the internal use Statistics of Income (SOI) individual tax
return sample files from 1979 onward. We then calculate the total income of stockholders
by isolating only those households with nonzero dividends (divinc) and/or nonzero realized
capital gain (kginc). Total income is defined as the sum of capital income (Y K

i,t ) and labor
income (Y L

i,t),

Yi,t ≡ Y K
i,t + Y L

i,t.

Capital income Y K
i,t is defined as

Y K
i,t ≡ div i,t + inti,t + renti,t + kbusi,t + peni,t,

where divi,t is dividends (divkg_na), inti,t is interest (int_na), renti,t is housing income
(rent_na), kbusi,t is the return on business wealth (kbus_na), and peni,t is pension income
(pen_na). Labor income Y L

i,t is defined as

Y L
i,t ≡ wagei,t + lbusi,t,
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where wagei,t is wage income (wag_na) and lbusi,t is business income net of the return on
business wealth.
We rank households into wealth groups by capitalized dividends (divinc) as described

above in the subsection “Household Stock Market Wealth”and calculate the total income
Yi,t for each group. We apply linear interpolation for the data points in 1963 and 1965 that
are missing in the NBER data set.

II. A Stylized Model of Asset Owners and Workers

We consider a stylized limited participation endowment economy in which wealth is
concentrated in the hands of a few asset owners, or “shareholders,”while most households
are “workers” who finance consumption out of wages and salaries. We consider a closed
economy. Workers own no risky asset shares and consume their labor earnings. There is no
risk-sharing between workers and shareholders. A representative firm issues no new shares
and buys back no shares. Dividends are equal to output minus a wage bill,

Dt = Yt − wtNt,

where wt equals the wage and Nt is aggregate labor supply. The wage bill is equal to Yt
times a time-varying labor share αt,

wtNt = αtYt => Dt = (1− αt)Yt. (IA1)

We rule out short sales in the risky asset:

θit ≥ 0.

Asset owners not only purchase shares in the risky security, but also trade with one another
in a one-period bond with price at time t denoted by qt. The real quantity of bonds is
denoted Bt+1, where Bt+1 < 0 represents a borrowing position. The bond is in zero net
supply among asset owners. Asset owners could also have idiosyncratic investment income
ζ it. The gross financial assets of investor i at time t are given by

Ait ≡ θit (Vt +Dt) +Bi
t.

The budget constraint for the ith investor is

Ci
t +Bi

t+1qt + θit+1Vt = Ait + ζ it (IA2)

= θit (Vt +Dt) +Bi
t + ζ it,
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where Ci
t denotes the consumption of investor i.

A large number of identical nonrich workers, denoted by w, receive labor income and
do not participate in asset markets. The budget constraint for the representative worker is
therefore

Cw = αtYt. (IA3)

Equity market clearing requires ∑
i

θit = 1.

Bond market clearing requires ∑
i

Bi
t = 0.

Aggregating (IA2) and (IA3) and imposing both market clearing and (IA1) implies that
aggregate (worker plus shareholder) consumption Ct is equal to total output Yt. Aggregating
over the budget constraint of shareholders shows that their consumption is equal to the
capital share times Ct:

CS
t = Dt = (1− αt)︸ ︷︷ ︸

KSt

Ct.

A representative shareholder who owns the entire corporate sector will therefore have con-
sumption equal to Ct · KSt. This reasoning goes through as an approximation if workers
own a small fraction of the corporate sector even if there is some risk-sharing in the form
of risk-free borrowing and lending between workers and shareholders, as long as any risk-
sharing across these groups is imperfect. The point is that, while individual shareholders can
smooth out transitory fluctuations in income by buying and selling assets, shareholders as
a whole are less able to do so since purchases and sales of any asset must net to zero across
all asset owners.

III. Low Frequency Risk Exposures

This section provides a parametric example of conditions under which longer-horizon
(e.g., multi-quarter) risk exposures more accurately measure the true short-horizon (e.g.,
one-quarter) exposure in finite samples. We start with the SDF

Mt = δ

(
Cs
t

Cs
t−1

)−γ (
Gt+1

Gt

)−χ
,
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or
logMt = log (δ)− γ∆ lnCs

t − χ∆ lnGt.

Using the approximation logMt ≈Mt − 1, we have

Mt ≈ 1 + log (δ)− γ∆ lnCs
t − χ∆ lnGt

≈ b0 − γ
Cs
t

Cs
t−1
− χ Gt

Gt−1
,

where b0 = 1 + log (δ)−γ−χ. This is an approximately linear two-factor model with factors
given by Cst

Cst−1
and the latent Gt

Gt−1
.

Let stockholder consumption be given by Cs
t = CtKSt, where Ct is aggregate (shareholder

plus worker) consumption. Aggregate consumption growth is very stable compared to capital
share growth in our sample. For the sake of illustration in this appendix, we assume it is
constant. Then KSt is the only source of variation in stockholder consumption growth and
the two factors are now the latent Gt

Gt−1
and KSt

KSt−1
. We denote the true value of the parameters

with superscript “o”. In this example, the data generating processes (DGPs) of gross returns
Rj,t+1, KSt

KSt−1
, and Gt

Gt−1
are presumed to follow

Rj,t+1 = 1 + βoG
Gt

Gt−1
+ βoKS,1

KSt
KSt−1

+ ζj,t+1(
KSt+1
KSt

− µoKS
)

= ρoKS

(
KSt
KSt−1

− µoKS
)

+ εKS,t+1(
Gt+1

Gt

− µoG
)

= ρoG

(
Gt

Gt−1
− µoG

)
+ εG,t+1,

where ζj,t+1 is an idiosyncratic shock. The level of capital share growth appears extremely
persistent in the data, with an estimated first-order autoregressive root of 0.97, a series in-
distinguishable from one with a unit root in statistical tests. Since there are well-known
diffi culties with simulating from a process with an autoregressive root that is local-to-unity,
we instead simulate from a process calibrated to match autoregressive properties of the
growth in the capital share, which is clearly stationary in the data, with a first-order autore-
gressive coeffi cient of -0.25. It should be clear that an autoregressive coeffi cient of -0.25 in
the first-differenced data is tautologically consistent with a DGP that has an autoregressive
root of 0.97 in levels.
We let ζj,t+1 be drawn from Normal distribution N

(
0, σ2ζ

)
and (εKS,t+1, εG,t+1) be jointly
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drawn from a bivariate Normal distribution, that is,

ζj,t ∼ N
(
0, σ2ζ

)
(εG,t, εKS,t)

′ ∼ N (0,Σ) ,

where

Σ =

[
σ2G σGKS

σGKS σ2KS

]
.

Because the latent factor Gt+1
Gt

is omitted from the econometrician’s set of risk factors,
capital share risk exposures are estimated using the univariate regressions

Rj,t+H,t = a+ βKS,H
KSt+H,t
KSt

+ uj,t+1,

for various H = 1, 2, ..., where H represents the horizon over which returns and capital share
growth are measured and Rj,t+H,t denotes the gross return from the end of t to the end of
t+H. We now consider a parametric example intended to illustrate of the conditions under
which longer horizon risk exposures more accurately measure true risk exposures even at
short horizons. The parametrization is given in the table below for two different values of
the true one-period capital share exposure β0KS,1.

Parameters

β0G β0KS,1 ρKS ρG σG σKS µG µKS σGKS σζ

0.1 0.10 −0.25 −0.5 1.5 0.45 1.10 1.05 (−0.21,−0.18,−0.12) 0.1

The calibration of ρKS = −0.25 is set to match the estimated first order autocorrelation
coeffi cient for capital share growth in the data. Consider a parameterization in which positive
exposure to Gt+1

Gt
earns a positive risk premium. In this case, β0G > 0. Key aspects of the

above parametrization are that σGKS < 0 and ρG < ρKS. That is, the omitted factor is
negatively correlated with the included factor KSt+H,t

KSt
but more transitory than the included

factor. The results for a sample size of T = 202 as in our data are below. The estimated
betas are reported as averages over N = 10, 000 samples for β̂KS,H for two values of β

0
KS,1.
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Average Estimated β̂KS,H across 10, 000 Samples

β0KS,1 σGKS H = 1 H = 4 H = 6 H = 8 H = 10 H = 12 H = 14 H = 16

0.10 −0.21 −0.01 0.01 0.02 0.02 0.03 0.05 0.06 0.09

0.10 −0.18 0.01 0.03 0.04 0.05 0.06 0.10 0.12 0.19

0.10 −0.12 0.04 0.06 0.08 0.10 0.13 0.19 0.26 0.39

Under this parameter configuration, β̂KS,1 is biased downward when the true exposure
β0KS,1 is positive and biased upward when the true exposure is negative, thereby compressing
spreads. But, depending on the value of σGKS, the long-horizon estimated exposures β̂KS,H
for H = 8, 12, or 16 are better estimates of the true one-period exposure β0KS,1. The reason
is that the long-horizon regressions attenuate the bias in short—horizon betas created by
omitting the less persistent but more volatile Gt+1/Gt. This factor is a source of noise in
the short-horizon regressions but is largely dissipated in the long-horizon relationships. If
H is too big, given the parameter values, the bias begins to rise once more. The “optimal”
H depends on the data generating process, but this should be informed by the horizon that
works best in the one-period return regressions. Since the missing factor is by definition
unknown and latent, we can’t know what the true data generating process might be. This
result should therefore be viewed as a possibility result that shows why, in some cases, longer
horizon betas might explain one-period returns better than one-period betas.

IV. GMM Estimations

A. Nonlinear SDF Estimation

Estimates of the benchmark nonlinear models are based on the N +1 moment conditions

gT (b) = ET

[
Re
t − λ01N +

(Mt+H,t−µH)Re
t+H,t

µH

Mt+H,t − µH

]
=

[
0

0

]
, (IA4)

where ET denotes the sample mean in a sample with T time-series observations, Re
t =[

Re
1,t...R

e
N,t

]′
denotes an N × 1 vector of excess returns, and the parameters to be estimated

are denoted by b ≡ (µH , γ, λ0, β)′ . The first N moments are the empirical counterparts

to E
(
Re
jt+1

)
=
−Cov(Mt+1,Ret+1)

E(Mt+1)
, with two differences. First, the parameter λ0 (the same in
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each return equation) is included to account for a “zero-beta”rate if there is no true risk-
free rate and quarterly T -bills are not an accurate measure of the zero-beta rate. Second,
the equations to be estimated specify models in which long-horizon H-period empirical
covariances between excess returns Re

t+H,t and the SDF Mk
t+H,t are used to explain short-

horizon (quarterly) average return premia E (Re
t ). This implements the approach that is

discussed in the text regarding low-frequency risk exposures. We estimate models of the
form (IA4) for different values of H.4

The equations above are estimated using a weighting matrix consisting of an identity
matrix for the first N moments, and a very large fixed weight on the last moment used to
estimate µH . By equally weighting the N Euler equation moments, we ensure that the model
is forced to explain spreads in the original test assets, and not spreads in reweighted portfolios
of these.5 This is crucial for our analysis, since we seek to understand the large spreads on
the specific portfolios of this study, not on re-weighted portfolios of these. However, it is
important to estimate the mean of the SDF accurately. Since the SDF is less volatile than
stock returns, this requires placing a large (fixed) weight on the last moment.
For these estimations, we report a cross-sectional R2 for the asset pricing block of mo-

ments as a measure of how well the model explains the cross-section of quarterly returns.
This measure is defined as

R2 = 1−
V arc

(
ET
(
Re
j

)
− R̂e

j

)
V arc (ET (Re

i ))

R̂e
j = λ̂0 +

ET
[(
M̂k

t+H,t − µ̂H
)
Re
j,t+H,t

]
µ̂H

,

where V arc denotes cross-sectional variance, R̂e
j is the average return premium predicted by

the model for asset j, and “hats”denote estimated parameters.

B. Linear SDF Estimation

The nonlinear SDF is
4This approach and underlying model are different than those in Parker and Julliard (2004), who studied

covariances between short-horizon returns and future consumption growth over longer horizons. We do not

follow this approach here because such covariances are unlikely to capture low-frequency components in the

stock return-capital share relationship, which requires relating long-horizon returns to long-horizon SDFs.
5See Cochrane (2005) for a discussion of this issue.
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Mt+H,t = δH
(
Ct+H
Ct

)−γ (
KSt+H
KSt

)−γ
.

We take a linear approximation of the above as follows. Taking logs, we have

ln (Mt+H,t) = ln
(
δH
)
− γ ln

(
Ct+H
Ct

)
− γ ln

(
KSt+H
KSt

)
.

Using ln (1 + x) ≈ x, we have

Mt+H,t − 1 ≈ ln (Mt+H,t) = ln
(
δH
)
− γ ln

(
Ct+H
Ct

)
− γ ln

(
KSt+H
KSt

)
≈ ln

(
δH
)
− γ

(
Ct+H
Ct
− 1

)
− γ

(
KSt+H
KSt

− 1

)
,

or

Mt+H,t ≈
[
1 + ln

(
δH
)]︸ ︷︷ ︸

b0

− b1
(
Ct+H
Ct
− 1

)
− b2

(
KSt+H
KSt

− 1

)
b1 = b2 = γ.

We use the above linearized Mt+H,t in GMM moment conditions (IA4). However, since we
are using excess return data, b0 and therefore the mean of the SDF µH cannot be identified
in the linear SDF specification. We calibrate δ = (0.95)

1
4 , which pins down both b0 and

µH ≡ E (Mt+H,t) = b0 − b1E
(
Ct+H
Ct
− 1
)
− b2E

(
KSt+H
KSt

− 1
)
. We estimate three cases, (i)

b1 = b2 = γ, (ii) b1 = 0, b2 = γ, and (iii) b1 = γ, b2 = 0 using the moment conditions

gT (b) = ET



Re
t − λ01N +

(Mt+H,t−µH)Re
t+H,t

E(Mt+H,t)(
Ct+H
Ct
− 1
)
− µc,H(

KSt+H
KSt

− 1
)
− µKS,H(

Ct+H
Ct
− 1
)(

KSt+H
KSt

− 1
)
− σC,KS(

Ct+H
Ct
− 1
)2
− σ2c(

KSt+H
KSt

− 1
)2
− σ2KS


= 0.

The first block of moment conditions estimate the Euler equations, while the remaining
blocks estimate the parameter elements of the covariance matrix of factors. The factor risk
prices λH can be derived from
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E (Re
t ) = λ0 −

(Mt+H,t − µH)Re
t+H,t

µH

= λ0 +
Cov

(
Re
t+H,t, f

′
H

)
b

µH

= λ0 +
Cov

(
Re
t+H,t, f

′
H

)
Cov (fH , f

′
H)−1Cov (fH , f

′
H) b

µH

= λ0 +
βHCov (fH , f

′
H) b

µH
,

where µH = E (Mt+H,t) . It follows that

λH =
Cov (fH , f

′
H) b

µH
.

The estimated Cov(fH , f ′H) are as follows.

Cov(f ′H , fH), fH =
(
Ct+H
Ct−1

− 1, KSt+H
KSt−1

− 1
)

all units are in multiples of 1000

H = 4 0.1968 −0.0164

−0.0164 0.6709

H = 8 0.5736 −0.1405

−0.1405 1.2184

.

Table IA.II shows the cross-sectional explanatory power for quarterly expected returns of
the model with the restriction b1 = b2 imposed. Table IA.I shows that the estimates of λC,H
are often several times smaller than those of λKS,H despite b1 = b2. From the estimates of
Cov(f ′H , fH), we see that the off-diagonal elements are small, implying that the correlation
between the factors is low (equal to -0.04 for H = 4 and -0.17 for H = 8). With these
estimates, an empirical model that eliminates consumption growth from the SDF altogether
is likely to perform about as well as one that includes it. Table IA.III shows that this is the
case: little is lost in terms of cross-sectional R2 or pricing errors by estimating a model with
b1 constrained to be zero, compared to the case in which b1 = b2 in Table IA.II. By contrast,
dropping capital share growth from the SDF makes a big difference to the cross-section fit,
as shown in Table IA.IV.
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C. Two-Pass Regression GMM Estimation

Denote a generic vector of K factors for any model as ft (where K could be one, as in
the capital share SDF). This appendix gives the general approach to our estimation of factor
risk prices using two-pass (time-series and cross-sectional) regressions for any linear factor
model.
The moment conditions for the expected return-beta representations are

gT (b) =



E

Re
t+H,t︸ ︷︷ ︸
N×1

− a︸︷︷︸
N×1

− β︸︷︷︸
(N×K)

ft︸︷︷︸
(K×1)


E
((
Re
t+H,t − a− βf t

)
⊗ ft

)
E

 Re
t︸︷︷︸

N×1

− λ0 − β︸︷︷︸
(N×K)

λ︸︷︷︸
(K×1)




=

 00
0

 . (IA5)

where a = [a1...aN ]′ and β = [β1...βN ]′ , with parameter vector b′ = [a,β, λ0,λ]′ . To obtain
OLS time-series estimates of a and β and OLS cross sectional estimates of λ0 and λ, we
choose parameters b to set the following linear combination of moments to zero:

aTgT (b) = 0,

where

aT =

[
I 0

0 [1N ,β]′

]
.

The point estimates from GMM are identical to those from Fama-MacBeth (1973) re-
gressions. To see this, to do OLS cross-sectional regressions of E (Ri,t) on β, recall that the
first-order necessary condition for minimizing the sum of squared residuals is

β̃
(
E (Ri,t)− β̃ [λ0,λ]

)
= 0 =⇒

[λ0,λ] =
(
β̃
′
β̃
)−1

β̃E (Ri,t) ,

where β̃ = [1N ,β] to account for the intercept. If we multiply the first moment conditions
with the identity matrix and the last moment condition with (K + 1)×N vector β̃

′
, we have

OLS time-series estimates of a and β and OLS cross sectional estimates of λ. To estimate
the parameter vector b, we set

aTgT (b) = 0,
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where

aT︸︷︷︸
#Params×#Moments

=


I(K+1)N︸ ︷︷ ︸

(K+1)N×(K+1)N

0︸︷︷︸
(K+1)N×N

0︸︷︷︸
(K+1)×(K+1)N

[1N ,β]′︸ ︷︷ ︸
(K+1)×N

 .
To use Hansen’s (1982) formulas for standard errors, we compute the d matrix of deriv-

atives,

d︸︷︷︸
(K+2)N×[(K+1)N+K+1]

=
∂gT

∂b′

=



−IN︸ ︷︷ ︸
N×N

−IN ⊗ E (f1) · · · −IN ⊗ E (fK)︸ ︷︷ ︸
N×KN

0︸︷︷︸
N×(K+1)

−IN ⊗ E (f1)
...

−IN ⊗ E (fK)︸ ︷︷ ︸
KN×N

−IN ⊗ E
(
f21
)

· · · −IN ⊗ E (fKf1)
...

. . .
...

−IN ⊗ E (f1fK) · · · −IN ⊗ E
(
f2K
)︸ ︷︷ ︸

KN×KN

0︸︷︷︸
KN×(K+1)

0︸︷︷︸
N×N

−IN ⊗ λ′1 · · · −IN ⊗ λ′K︸ ︷︷ ︸
N×KN

− [1N ,β]︸ ︷︷ ︸
N×(K+1)


.

We also need the S matrix, that is, the spectral density matrix at frequency zero of the
moment conditions,

S =
∞∑

j=−∞
E


 Re

t+H,t − a− βf t(
Re
t+H,t − a− βf t

)
⊗ ft

Re
t − λ0 − βλ


 Re

t+H−j,t−j − a− βf t−j(
Re
t+H−j,t−j − a− βf t−j

)
⊗ ft−j

Re
t−j − λ0 − βλ


 .

Denote

ht (b) =

 Re
t+H,t − a− βf t(

Re
t+H,t − a− βf t

)
⊗ ft

Re
t − λ0 − βλ

 .
We employ a Newey-West (1987) correction to the standard errors with lag L by using

the estimate

ST =
L∑

j=−L

(
L− |j|
L

)
1

T

T∑
t=1

ht

(
b̂
)
ht−j

(
b̂
)′
.

Asymptotic standard errors for the factor risk price estimates, λ, can be obtained using
Hansen’s formula for the sampling distribution of the parameter estimates,

V ar
(
b̂
)

︸ ︷︷ ︸
[(K+1)N+K+1]×[(K+1)N+K+1]

=
1

T
(aTd)−1 aTSTa

′
T (aTd)′−1 .
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V. Bootstrap Procedure

This section describes the bootstrap procedure for assessing the small sample distribution
of cross-sectional R2 statistics. The bootstrap consists of the following steps.
1. For each test asset j, we estimate the following time-series regressions on historical

data for each H period exposure we study:

Re
j,t+H,t = aj,H + βj,KS,H ([KSt+H ] / [KSt]) + uj,t+H,t. (IA6)

We obtain the full-sample estimates of the parameters aj,H and βj,KS,H , which we denote by
âj,H and β̂j,KS,H .
2. We estimate an AR(1) model for capital share growth also on historical data:

KSt+H
KSt

= aKG,H + ρH

(
KSt+H−1
KSt−1

)
+ et+H,t. (IA7)

3. We estimate λ0 and λ using historical data from cross-sectional regressions,

E
(
Re
j,t

)
= λ0 + λβ̂j,KS,H + εj,

where Re
j,t is the quarterly excess return. From this regression we obtain the cross sectional

fitted errors {̂εj}j and historical sample estimates λ̂0 and λ̂.
4. For each test asset j, we draw randomly with replacement from blocks of the fitted

residuals from the above time-series regressions:
û1,1+H,1 · · · ûN,1+H,1 ê1+H,1

û1,2+H,2 ûN,2+H,2 ê2+H,2
...

...
...

û1,T,T−H · · · ûN,T,T−H êT,T−H

 . (IA8)

The mth bootstrap sample
{
u
(m)
1,t+H,t, ..., û

(m)
N,T,T−H , e

(m)
t+H,t

}H
t=1
is obtained by sampling blocks

of the raw data randomly with replacement and laying them end-to-end in the order sampled
until a new sample of observations of length equal to the historical data set is obtained.
To choose the block length, we follow the recommendation of Hall, Horowitz, and Jing
(1995), who show that the asymptotically optimal block length for estimating a symmetrical
distribution function is l ∝ T 1/5; see also Horowitz (2003). For the results reported in the
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text, we use a block length equal to T 1/5 = 3, but we check the robustness of our results to
lengths of 5, 8, 12, and 20 and find little difference in the resulting confidence sets.
Next, we recursively generate new data series for KSt+H

KSt
by combining the initial value

of KS1+H
K1

in our sample along with the estimates from historical data âKG,H , ρ̂H and the

new sequence of errors
{
e
(m)
t+H,t

}
t
,thereby generating an mth bootstrap sample on capital

share growth
{(

KSt+H
KSt

)(m)}
t

. We then generate new samples of observations on long-

horizon returns
{
R
(m)
j,t+H,t

}
t
from new data on

{
u
(m)
j,t+H,t

}
t
and

{(
KSt+H
KSt

)(m)}
t

and the sample

estimates âj,H and β̂j,KS,H .

5. We generate an mth observation β(m)j,KS,H from a regression of
{
R
e(m)
j,t+H,t

}
t
on the mth

observation
{(

KSt+H
KSt

)(m)}
t

and a constant.

6. We obtain an mth bootstrap sample
{
ε
(m)
j

}
j
by sampling the fitted errors {̂εj}j ran-

domly with replacement and laying them end-to-end in the order sampled until a new sample
of observations of length N equal to the historical cross-sectional sample is obtained. We
then generate new samples of observations on quarterly average excess returns

{
E
(
R
e(m)
j,t

)}
j

from new data on
{
ε
(m)
j

}
j
and

{
β
(m)
j,KS,H

}
j
and the sample estimates λ̂0 and λ̂.

7. We form the mth estimates λ(m)0 and λ(m) by regressing
{
E
(
R
e(m)
j,t

)}
j
on the mth

observation
{
β
(m)
j,KS,H

}
j
and a constant. We store the mth sample cross-sectional R

2
, R

(m)2
,

along with the mth values of λ(m)0 and λ(m).
8. We repeat steps 4 to 7 10,000 times, and report the 95% confidence intervals for R

(m)2
,

λ
(m)
0 ,and λ(m).

A. Procedure Controlling for Other Pricing Factors

The bootstrap for cross-sectional regressions in which we control for other pricing factors
is modified as follows.
1. Follow steps 1 to 5 separately for KS and the additional pricing factor(s) f and

generate β(m)j,KS,H and β
(m)
j,f,H for the mth bootstrap.

2. Obtain an mth bootstrap sample
{
ε
(m)
j

}
j
from the cross-sectional regression

E
(
Re
j,t

)
= λ0 + λKSβ̂j,KS,H + λHSβj,f,H + εj.
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As before, sample the fitted errors {̂εj}j randomly with replacement, laying them end-to-end
in the order sampled until a new sample of observations of length N equal to the historical
cross-sectional sample is obtained. Generate new samples of observations on quarterly aver-
age excess returns

{
E
(
R
e(m)
j,t

)}
j
from new data on

{
ε
(m)
j

}
j
and

{
β
(m)
j,KS,H , β

(m)
j,f,H

}
j
and the

sample estimates λ̂0, λ̂KS, and λHS.
3. Form the mth estimates λ(m)0 and λ(m) =

(
λ
(m)
KS , λ

(m)
f

)
by regressing

{
E
(
R
e(m)
j,t

)}
j

on the mth observation
{
β
(m)
j,KS,H , β

(m)
j,f,H

}
j
and a constant. We store the mth sample cross-

sectional R
2
, R

(m)2
.

4. We repeat steps 1 to 3 10,000 times, and report the 95% confidence interval of R
(m)2

,
λ
(m)
KS ,and λ

(m)
f .

B. Bootstrap Under the Null of No Cross-Sectional Explanatory Power

We also conduct a bootstrap simulation under the null hypothesis that βj,KS,1 = βKS,1 for
all j. The steps in the bootstrap are the same as above with the following exceptions: in Step
1 we estimate the time-series regressions on historical data for H = 1 period exposures and
calibrate βj,KS,1 to be the average value across assets, for all j. In Step 3, we set λKS = 0,
so the portfolios are completely independent. One-period returns are then cumulated up to
H-period returns and the bootstrap confidence intervals under the null of no cross-sectional
explanatory power are computed. Table IA.VII below shows that the 95% bootstrapped
confidence interval for the cross-sectional R

2
under the null of no explanatory power ranges

from values close to zero to values typically around 0.17 or smaller. By contrast, the esti-
mated R are much higher and fall well outside these ranges. The REV portfolios exhibit
the largest ranges for the cross-sectional R under the null, with the upper end of the range
about 0.4. These values are still much smaller than the estimated R for these portfolios. In
short, the magnitude of explanatory power that we find is too large to be accounted for by
sampling error in samples of the size we currently have.
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VI. Internet Appendix Tables and Figures

Table IA.I

Risk Price Estimates of Linear Capital Share SDF

This table reports estimates of risk prices λH . All estimates are multiplied by 100. The es-

timated b is from GMM estimation imposing b1 = b2. Serial correlation and heteroskedas-

ticity robust t-statistics are reported in parentheses. ∗∗ and ∗ indicate significance at the
5% and 10% level, respectively. The sample spans the period 1963Q3 to 2013Q4.

λH = −E (Mt+H,t)
−1Cov(f ′H , fH) b, b= [b1, b2]

′, b1 = b2

Panel A: Size/BM Panel B: REV Panel C: Size/INV

H 4 8 4 8 4 8

λC,H 0.17∗∗ 0.15∗∗ 0.15∗ 0.12∗ 0.14∗ 0.18∗

(2.22) (2.81) (1.82) (1.69) (1.68) (1.77)

λKS,H 0.61∗∗ 0.53∗∗ 0.53 0.30 0.49∗ 0.44∗

(2.35) (2.97) (1.79) (1.59) (1.76) (1.92)

Panel D: Size/OP Panel E: All Equities Panel F: Bonds

H 4 8 4 8 4 8

λC,H 0.16∗ 0.18 0.15∗ 0.17∗∗ 0.13∗ 0.11∗

(1.72) (1.36) (1.93) (2.01) (1.95) (1.72)

λKS,H 0.57∗ 0.45 0.55∗∗ 0.43∗∗ 0.56∗ 0.31

(1.84) (1.50) (2.02) (2.19) (1.74) (1.52)

Panel G: Sovereign Bonds Panel H: Options Panel I: CDS

H 4 8 4 8 4 8

λC,H 0.04 0.07 0.11 1.17 0.19 0.34∗

(0.34) (0.81) (1.03) (1.31) (1.46) (1.74)

λKS,H 0.92 0.52 1.01∗∗ 0.71∗ 0.78 0.59∗

(1.18) (1.07) (2.25) (1.81) (1.24) (1.75)



Table IA.II

Parameter Estimates of Linear Capital Share SDF

This table reports GMM estimates of linear capital share SDF. The cross-sectional R2 is

defined as R2 = 1− V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted value R̂ei = α̂+
E[(Mk

t+H,t−µ̂)R
e
t+H,t]

µ̂ .

The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =√

1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at the 5% and 10% level, respectively.

Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses.

The sample spans the period 1963Q3 to 2013Q4.

SDF: Mt+H,t = b0 − b1
(
Ct+H
Ct
− 1
)
− b2

(
KSt+H
KSt

− 1
)

b1 = b2 = b

Panel A: Size/BM Panel B: REV Panel C: Size/INV

H 4 8 4 8 4 8

b 7.38∗∗ 3.21∗∗ 6.57∗∗ 2.24∗ 6.16∗∗ 3.14∗∗

(2.69) (3.84) (2.09) (1.83) (1.97) (2.42)

R2 0.56 0.83 0.64 0.83 0.41 0.69
RMSE
RMSR 0.20 0.12 0.14 0.09 0.21 0.15

Panel D: Size/OP Panel E: All Equities Panel F: Bonds

H 4 8 4 8 4 8

b 6.95∗∗ 3.17∗ 6.74∗∗ 3.04∗∗ 7.82∗∗ 2.52

(2.09) (1.91) (2.29) (2.74) (2.06) (1.64)

R2 0.59 0.62 0.53 0.73 0.76 0.69
RMSE
RMSR 0.17 0.17 0.19 0.15 0.23 0.26

Panel G: Sovereign Bonds Panel H: Options Panel I: CDS

H 4 8 4 8 4 8

b 13.37∗ 4.11 15.90∗∗ 5.99∗∗ 12.22∗ 5.32∗∗

(1.80) (1.43) (3.84) (2.99) (1.74) (2.14)

R2 0.85 0.84 0.97 0.96 0.33 0.52
RMSE
RMSR 0.18 0.17 0.14 0.15 0.75 0.63



Table IA.III

Parameter Estimates of Univariate Capital Share SDF

This table reports GMM estimates of linear capital share SDF. The cross-sectional R2 is

defined as R2 = 1− V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted value R̂ei = α̂+
E[(Mk

t+H,t−µ̂)R
e
t+H,t]

µ̂ .

The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =√

1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at the 5% and 10% level, respectively.

Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses.

The sample spans the period 1963Q3 to 2013Q4.

SDF: Mt+H,t = b0 − b1
(
Ct+H
Ct
− 1
)
− b2

(
KSt+H
KSt

− 1
)

b1 = 0

Panel A: Size/BM Panel B: REV Panel C: Size/INV

H 4 8 4 8 4 8

b2 10.10∗∗ 4.90∗∗ 8.48∗ 2.65 8.15 3.94∗

(1.99) (2.96) (1.82) (1.59) (1.62) (1.86)

R2 0.51 0.81 0.74 0.88 0.40 0.62
RMSE
RMSR 0.21 0.13 0.12 0.08 0.21 0.17

Panel D: Size/OP Panel E: All Equities Panel F: Bonds

H 4 8 4 8 4 8

b2 9.47∗ 4.17 9.15∗ 4.12∗∗ 12.32∗ 4.03∗

(1.89) (1.53) (1.89) (2.05) (1.81) (1.86)

R2 0.77 0.77 0.56 0.73 0.88 0.86
RMSE
RMSR 0.13 0.13 0.19 0.15 0.17 0.17

Panel G: Sovereign Bonds Panel H: Options Panel I: CDS

H 4 8 4 8 4 8

b2 19.41 5.59∗ 29.16∗∗ 12.04∗∗ 18.62∗ 7.15∗∗

(1.46) (1.78) (2.74) (2.11) (1.92) (2.53)

R2 0.86 0.58 0.95 0.81 0.82 0.94
RMSE
RMSR 0.17 0.27 0.18 0.35 0.38 0.23



Table IA.IV

Parameter Estimates of Univariate Consumption SDF

This table reports GMM estimates of linear consumption SDF. The cross-sectional R2 is

defined as R2 = 1− V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted value R̂ei = α̂+
E[(Mk

t+H,t−µ̂)R
e
t+H,t]

µ̂ .

The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =√

1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at the 5% and 10% level, respectively.

Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses.

The sample spans the period 1963Q3 to 2013Q4.

SDF: Mt+H,t = b0 − b1
(
Ct+H
Ct
− 1
)
− b2

(
KSt+H
KSt

− 1
)

b2 = 0

Panel A: Size/BM Panel B: REV Panel C: Size/INV

H 4 8 4 8 4 8

b1 15.11∗∗ 4.53∗∗ −4.70 2.19 10.46∗ 2.93

(2.66) (2.21) (−0.35) (0.88) (1.92) (1.47)

R2 0.30 0.33 0.00 0.01 0.13 0.11
RMSE
RMSR 0.25 0.25 0.23 0.22 0.25 0.26

Panel D: Size/OP Panel E: All Equities Panel F: Bonds

H 4 8 4 8 4 8

b1 −8.87 −1.41 7.95 2.69∗ 10.52 2.09

(−0.66) (−0.49) (1.64) (1.69) (1.25) (0.92)

R2 0.06 0.02 0.07 0.10 0.17 0.07
RMSE
RMSR 0.26 0.28 0.27 0.27 0.43 0.45

Panel G: Sovereign Bonds Panel H: Options Panel I: CDS

H 4 8 4 8 4 8

b1 7.04 2.69 34.40∗∗ 10.73∗ −47.05 −10.38
(0.69) (0.78) (2.48) (1.91) (−0.89) (−1.48)

R2 0.05 0.20 0.99 0.99 0.45 0.28
RMSE
RMSR 0.44 0.37 0.09 0.08 0.68 0.76



Table IA.V

Risk Price Estimates of Univariate Capital Share SDF

This table reports GMM estimates of linear capital share SDF. The cross-sectional R2 is

defined as R2 = 1− V arc(E(Re
i )−R̂

e
i )

V arc(E(Re
i ))

, where the fitted value R̂ei = α̂+
E[(Mk

t+H,t−µ̂)R
e
t+H,t]

µ̂ .

The pricing error is defined as RMSE =

√
1
N

∑N
i=1

(
E (Rei )− R̂ei

)2
and RMSR =√

1
N

∑N
i=1 (E (Rei ))

2
. ∗∗ and ∗ indicate significance at the 5% and 10% level, respectively.

Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses.

The sample spans the period 1963Q3 to 2013Q4.

λH= −E (Mt+H,t)
−1
Cov (fH , f

′
H)b, b = [b1, b2]

′, b1 = 0

Panel A: Size/BM Panel B: REV Panel C: Size/INV

H 4 8 4 8 4 8

λKS,H 0.74∗∗ 0.69∗∗ 0.62∗ 0.37 0.59 0.55∗

(2.00) (2.82) (1.77) (1.52) (1.61) (1.82)

Panel D: Size/OP Panel E: All Equities Panel F: Bonds

H 4 8 4 8 4 8

λKS,H 0.69∗ 0.58 0.67∗ 0.57∗∗ 0.81∗ 0.54∗

(1.90) (1.51) (1.90) (2.00) (1.87) (1.95)

Panel G: Sovereign Bonds Panel H: Options Panel I: CDS

H 4 8 4 8 4 8

λKS,H 1.50 0.99∗ 1.87∗∗ 1.72∗ 1.24∗ 0.83∗∗

(1.36) (1.95) (2.41) (1.66) (1.81) (2.93)



Table IA.VI

Nonlinear GMM Estimation of Capital Share SDF

This table reports estimates of risk prices λH . All estimates are multiplied by 100. The

estimated b is from GMM estimation imposing b1 = 0. Serial correlation and heteroskedas-

ticity robust t-statistics are reported in parenthesEs. ∗∗ and ∗ indicate significance at the
5% and 10% level, respectively. The sample spans the period 1963Q3 to 2013Q4.

SDF: Mt+H,t = δH
(
Ct+H
Ct

KSt+H
KSt

)−γ
Panel A: Size/BM Panel B: REV Panel C: Size/INV

H 4 8 4 8 4 8

λ0 −0.07 0.66 0.42 1.14 0.42 0.67

(−0.07) (0.64) (0.36) (1.30) (0.39) (0.70)

γ 10.41∗∗ 4.46∗∗ 8.14 2.93 8.13 4.54∗∗

(2.19) (3.27) (1.54) (1.59) (1.54) (2.18)

R2 0.56 0.84 0.57 0.84 0.40 0.71
RMSE
RMSR 0.20 0.12 0.15 0.09 0.21 0.15

Panel D: Size/OP Panel E: All Equities Panel F: Bonds

4 8 4 8 4 8

λ0 −0.13 0.63 0.14 0.75 0.38 0.25

(−0.12) (0.63) (0.14) (0.82) (1.63) (1.20)

γ 10.16∗ 4.48 9.28∗ 4.23∗∗ 9.31∗ 3.10

(1.73) (1.49) (1.85) (2.46) (1.75) (1.48)

R2 0.63 0.62 0.53 0.74 0.76 0.68
RMSE
RMSR 0.16 0.17 0.19 0.15 0.23 0.26

Panel G: Sovereign Bonds Panel H: Options Panel I: CDS

H 4 8 4 8 4 8

λ0 0.20 0.41 −1.56 −0.29 −0.18∗∗ −0.30∗∗

(0.27) (0.75) (−1.46) (−0.23) (−2.48) (−3.70)
γ 16.41 5.45 23.70∗∗ 9.02∗∗ 14.34 7.44

(1.49) (1.18) (2.30) (2.15) (1.27) (1.59)

R2 0.88 0.83 0.96 0.96 0.30 0.49
RMSE
RMSR 0.16 0.17 0.17 0.16 0.76 0.64



Table IA.VII

Bootstrap under the Null

This table reports estimates of risk prices λH . All estimates are multiplied by 100. Bootstrapped 95%

confidence intervals are reported in square brackets under the null of no cross-sectional explanatory power.

The sample spans the period 1963Q3 to 2013Q4.

E
(
Re
j,t

)
= λ0 + λ′HβH + εj, Estimates of Factor Risk Prices λH

Panel A: Size/BM Panel B: REV

H Constant KSt+H
KSt

R̄2 RMSE
RMSR Constant KSt+H

KSt
R̄2 RMSE

RMSR

4 0.65 0.74 0.51 0.19 0.83 0.63 0.70 0.11
Base [0.01, 1.23] [0.42, 1.08] [0.13, 0.77] [0.35, 1.32] [0.33, 0.92] [0.17, 0.91]

Under Null [−0.11, 1.40] [−0.01, 0.01] [−0.04, 0.16] [0.16, 1.50] [−0.02, 0.02] [−0.12, 0.43]

8 1.55 0.68 0.80 0.12 1.73 0.41 0.86 0.08
Base [1.39, 1.71] [0.53, 0.83] [0.52, 0.91] [1.62, 1.84] [0.30, 0.50] [0.68, 0.96]

Under Null [1.39, 1.72] [−0.00, 0.00] [−0.04, 0.16] [1.59, 1.86] [−0.05, 0.04] [−0.12, 0.40]

Panel C: Size/INV Panel D: Size/OP

H Constant KSt+H
KSt

R̄2 RMSE
RMSR Constant KSt+H

KSt
R̄2 RMSE

RMSR

4 0.92 0.61 0.39 0.19 0.60 0.70 0.78 0.12
Base [0.20, 1.54] [0.27, 0.96] [0.03, 0.70] [0.26, 0.94] [0.54, 0.87] [0.48, 0.89]

Under Null [−0.09, 1.87] [−0.02, 0.02] [−0.04, 0.16] [0.17, 1.02] [−0.01, 0.01] [−0.04, 0.16]

8 1.70 0.55 0.62 0.16 1.61 0.57 0.76 0.12
Base [1.50, 1.90] [0.37, 0.74] [0.29, 0.81] [1.46, 1.77] [0.45, 0.71] [0.42, 0.90]

Under Null [1.43, 1.97] [−0.01, 0.01] [−0.04, 0.17] [1.45, 1.77] [−0.00, 0.00] [−0.04, 0.16]

Panel E: All Equities Panel F: All Assets

H Constant KSt+H
KSt

R̄2 RMSE
RMSR Constant KSt+H

KSt
R2 RMSE

RMSR

4 0.74 0.68 0.58 0.17 0.39 0.83 0.78 0.25
Base [0.45, 1.01] [0.54, 0.83] [0.28, 0.73] [−0.91, 0.63] [0.71, 1.21] [0.28, 0.79]

Under Null [0.37, 1.10] [−0.01, 0.01] [−0.01, 0.05] [−0.26, 0.11] [−0.01, 0.01] [−0.01, 0.03]

8 1.65 0.57 0.74 0.14 1.34 0.63 0.44 0.41
Base [1.56, 1.74] [0.49, 0.66] [0.51, 0.84] [0.81, 1.72] [0.63, 0.96] [0.42, 0.84]

Under Null [1.55, 1.74] [−0.00, 0.00] [−0.01, 0.05] [0.51, 0.75] [−0.00, 0.00] [−0.01, 0.03]
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