Internet Appendix for "Capital Share Risk in U.S. Asset Pricing"

MARTIN LETTAU, SYDNEY C. LUDVIGSON, and SAI MA*

This Internet Appendix provides a number of additional findings, along with detailed information on our data and estimation procedure. Section I describes our data sources and data construction. Section II describes a stylized model of asset owners and workers. Section III presents a parametric example of conditions under which longer-horizon risk exposures more accurately measure short-horizon exposures in finite samples. Sections IV and V describe our GMM estimation and bootstrap procedures. Section VI reports additional results.

I. Data Description

A. CONSUMPTION

Consumption is measured as expenditures on nondurables and services, excluding shoes and clothing. The quarterly data are seasonally adjusted at annual rates, in billions of chain-weighted 2005 dollars. The components are chain-weighted together, and this series is scaled up so that the sample mean matches the sample mean of total personal consumption expenditures. Our source is the U.S. Department of Commerce, Bureau of Economic Analysis.

B. LABOR SHARE

We use nonfarm business sector labor share throughout the paper. For the nonfarm business sector, the methodology is summarized in Gomme and Rupert (2004). Labor share is measured as labor compensation divided by value added. Labor compensation is computed as Compensation of Employees - Government Wages and Salaries - Compensation of Employees of Nonprofit Institutions - Private Compensation (Households) -

[^0]Farm Compensation of Employees - Housing Compensation of Employees - Imputed Labor Compensation of Self-Employed. Value added is computed as Compensation of Employees + Corporate Profits + Rental Income + Net Interest Income + Proprietors' Income + Indirect Taxes Less Subsidies + Depreciation. The quarterly, seasonally adjusted data span from 1963:Q3 to 2013:Q4 with index $2009=100$. Our source is the Bureau of Labor Statistics. The quarterly labor share level can be found from the data set at https://www.bls.gov/lpc/special_requests/msp_dataset.zip.
C. QUARTERLY RETURNS

The return in quarter Q of year Y, denoted $R_{Q, Y}$, is the compounded monthly return over the three months in the quarter, $m 1, \ldots, m 3$,

$$
1+R_{Q, Y}=\left(1+\frac{R_{Q, Y}^{m 1}}{100}\right)\left(1+\frac{R_{Q, Y}^{m 2}}{100}\right)\left(1+\frac{R_{Q, Y}^{m 3}}{100}\right) .
$$

As test portfolios, we use the excess return constructed by subtracting the quarterly threemonth Treasury bill rate from the above. The sample spans from 1963Q1 to 2013Q4.

D. FAMA-FRENCH (1993) PRICING FACTORS

We obtain quarterly Fama-French (1993) pricing factors HML, SMB, and Rm, as well as risk-free rates from professor French's online data library. ${ }^{1}$ The sample spans 1963:Q3 to 2013:Q4.
E. LEVERAGE FACTOR

The broker-dealer leverage factor LevFac is constructed as follows. Broker-dealer (BD) leverage is defined as

$$
\text { Leverage }_{t}^{B D}=\frac{\text { Total Financial Assets }_{t}^{B D}}{\text { Total Financial Assets }_{t}^{B D}-\text { Total Liabilities }_{t}^{B D}}
$$

The leverage factor is constructed as seasonally adjusted log changes in Leverage ${ }_{t}^{B D}$

$$
\text { LevFac }_{t}=\left[\Delta \log \left(\text { Leverage }_{t}^{B D}\right)\right]^{S A} .
$$

This variable is available from Tyler Muir's website over the sample period used in Adrian, Etula, and Muir (2014), that is 1968:Q1 to 2009:Q4. ${ }^{2}$ In this paper we use the larger sample 1963:Q3 to 2013:Q4. There are no negative observations on broker-dealer leverage in this sample. To extend the sample to 1963:Q3 to 2013:Q4 we use the original data

[^1]on the total financial asset and liability of brokers and dealers data from flow of funds Table L. $128 .{ }^{3}$ Adrian, Etula, and Muir (2014) seasonally adjust $\Delta \log \left(\right.$ Leverage $\left._{t}^{B D}\right)$ by computing an expanding window regression of $\Delta \log \left(\right.$ Leverage $\left._{t}^{B D}\right)$ on dummies for three of the four quarters in the year at each date using the data up to that date. The initial series 1968Q1 uses data from the previous 10 quarters in their sample and samples expand by recursively adding one observation to the end. Thus, the residual from this regression over the first subsample window 1965:Q3 to 1968:Q1 is taken as the observation for LevFac 68:Q1 . An observation is added to the end and the process is repeated to obtain LevFac Cr_{62}, and so on. We follow the same procedure (starting with the same initial window 1965:Q3 to 1968:Q1) to extend the sample forward to 2013Q4. To extend backwards to 1963:Q1, we take data on $\Delta \log \left(\right.$ Leverage $\left._{t}^{B D}\right)$ from 1963:Q1 to 1967:Q4 and regress on dummies for three of four quarters and take the residuals of this regression as the observations on LevFac $_{t}$ for $t=1963:$ Q1 to 1967:Q4. Using this procedure, we exactly reproduce the series available on Tyler Muir's website for the overlapping subsample 1968:Q1 to 2009:Q4, with the exception of a few observations in the 1970s, a discrepancy that we cannot explain. To make the observations we use identical for the overlapping sample, we simply replace these few observations with those available on Tyler Muir's website.

F. HOUSEHOLD STOCK MARKET WEALTH

We obtain stock market wealth data from two sources. The first is the triennial Survey of Consumer Finance (SCF) conducted by Board of Governors of the Federal Reserve System from 1989 to 2013. Stock Wealth includes both direct and indirect holdings of public stock. Stock wealth for each household is calculated according to the construction in SCF, which is the sum of the following items: 1). directly-held stock, 2). stock mutual funds: full value if described as stock mutual fund, half value of combination mutual funds, 3). IRAs/Keoghs invested in stock: full value if mostly invested in stock, half value if split between stocks/bonds or stocks/money market, 4). other managed assets with equity interest (annuities, trusts, MIAs): full value if mostly invested in stock, half value if split between stocks/MFs \& bonds/CDs, or "mixed/diversified," one-third value if "other" stocks/bonds/money market, 5). thrift-type retirement accounts invested in stock full value if mostly invested in stock, half value if split between stocks and interest-earning assets, and 6). savings accounts classified as 529 or other accounts that may be invested in stocks. Households with nonzero/nonmissing stock wealth by any of the above are counted as a stockowner. All stock wealth values are

[^2]in real terms adjusted to 2013 dollars. All summary statistics (mean, median, participation rate, etc.) are computed using SCF weights. In particular, in the original data, to minimize the measurement error, each household has five imputations. We follow the exact method suggested on the SCF website and compute the desired statistic separately for each implicate using the sample weight (X42001). The final point estimate is given by the average of the estimates for the five implicates.

Our second source is the Saez-Zucman (SZ) data on wealth inequality based on capitalized income tax data, available at http://gabriel-zucman.eu/uswealth/. The SZ data provide estimates of the distribution of wealth and income for all households but do not isolate the distributions for stockholders. To do so, we first download the replication package at http://gabriel-zucman.eu/files/uswealth/SZreplic.zip along with the yearly public-use micro-files available at NBER at http://users.nber.org/ $\operatorname{taxsim}_{\text {/gdb/. Following SZ, we sup- }}$ plement this data set using the internal-use Statistics of Income (SOI) individual tax return sample files from 1979 onward. We define stockholders to be individuals with nonzero dividends (divinc) and/or nonzero realized capital gains (kginc). Next, we follow the "mixed" method of capitalizing income from dividends and capital gains proposed by SZ. Specifically, when ranking households into wealth groups, only dividends (divinc) are capitalized. Thus, if in 2000 the ratio of equities to the sum of dividend income reported on tax returns is 54, then a family's ranking in the wealth distribution is determined by taking its dividend income and multiplying by 54 . By contrast, when computing the stock wealth of each percentile group, both dividends and capital gains are capitalized. Thus, if in 2000 the ratio of equities to the sum of dividend and capital gain income reported on tax returns is 10, a household's equity wealth for that year is captured by multiplying it's dividend and capital gains income by 10. The purpose of this mixed method given by SZ is to smooth realized capital gains and not overstate the concentration of wealth. We apply linear interpolation for the data points in 1963 and 1965 that are missing in the NBER data set.

G. HOUSEHOLD INCOME DATA

We obtain household income data from two sources. The first is the SCF from period 1989 to 2013. We define total income as reported on the SCF as $Y_{t}^{i}=Y_{i, t}^{L}+Y_{i, t}^{c}+Y_{i, t}^{o}$. The mimicking factors for the income shares is computed by taking the fitted values $\widehat{Y_{t}^{i} / Y_{t}}$ from regressions of Y_{t}^{i} / Y_{t} on $\left(1-L S_{t}\right)$ to obtain quarterly observations extending over the larger sample for which data on $L S_{t}$ are available. All income is adjusted relative to 2013 dollars.

Throughout the paper, we define labor income as

$$
Y_{i, t}^{L} \equiv \text { wage }_{i, t}+L S_{t} \times s e_{i, t},
$$

where wage $_{i, t}$ is the labor wage at time $t, s e_{i, t}$ is the income from self-employment at time t, and $L S_{t}$ is the labor share at time t.

Similarly, we define capital income

$$
Y_{i, t}^{c} \equiv s e_{i, t}+i n t_{i, t}+\text { div }_{i, t}+c g_{i, t}+\text { pension }_{i, t},
$$

where $i n t_{i, t}$ is taxable and tax-exempt interest, div is dividends, $c g$ is realized capital gains and pension ${ }_{i, t}$ is pensions and withdrawals from retirement accounts.

Other income is defined as

$$
Y_{i, t}^{o} \equiv \text { gov }_{i, t}+s s_{i, t}+\text { alm }_{i, t}+\text { others }_{i, t},
$$

where gov $_{i, t}$ is food stamps and other related support programs provided by government, $s s_{i, t}$ is social security, $\operatorname{alm}_{i, t}$ is alimony and other support payments, and other $s_{i, t}$ is miscellaneous sources of income for all members of the primary economic unit in the household.

The second source is Saez-Zucman; see http://gabriel-zucman.eu/uswealth/. Similar to the wealth data, the SZ data provide estimates of the distribution of income for all households but do not isolate the distributions for stockholders. To do so, we first download the replication package at http://gabriel-zucman.eu/files/uswealth/SZreplic.zip along with yearly public-use micro-files available at the NBER at http://users.nber.org/~taxsim/gdb/ and supplement this data set using the internal use Statistics of Income (SOI) individual tax return sample files from 1979 onward. We then calculate the total income of stockholders by isolating only those households with nonzero dividends (divinc) and/or nonzero realized capital gain (kginc). Total income is defined as the sum of capital income $\left(Y_{i, t}^{K}\right)$ and labor income $\left(Y_{i, t}^{L}\right)$,

$$
Y_{i, t} \equiv Y_{i, t}^{K}+Y_{i, t}^{L} .
$$

Capital income $Y_{i, t}^{K}$ is defined as

$$
Y_{i, t}^{K} \equiv d i v_{i, t}+i n t_{i, t}+r e n t_{i, t}+k b u s_{i, t}+\text { pen }_{i, t}
$$

where $\operatorname{div}_{i, t}$ is dividends (divkg_na), int $_{i, t}$ is interest (int_na), rent $t_{i, t}$ is housing income (rent_na), $k b u s_{i, t}$ is the return on business wealth (kbus_na), and $p e n_{i, t}$ is pension income (pen_na). Labor income $Y_{i, t}^{L}$ is defined as

$$
Y_{i, t}^{L} \equiv \text { wage }_{i, t}+\text { lbus }_{i, t},
$$

where wage $_{i, t}$ is wage income (wag_na) and $l b u s_{i, t}$ is business income net of the return on business wealth.

We rank households into wealth groups by capitalized dividends (divinc) as described above in the subsection "Household Stock Market Wealth" and calculate the total income $Y_{i, t}$ for each group. We apply linear interpolation for the data points in 1963 and 1965 that are missing in the NBER data set.

II. A Stylized Model of Asset Owners and Workers

We consider a stylized limited participation endowment economy in which wealth is concentrated in the hands of a few asset owners, or "shareholders," while most households are "workers" who finance consumption out of wages and salaries. We consider a closed economy. Workers own no risky asset shares and consume their labor earnings. There is no risk-sharing between workers and shareholders. A representative firm issues no new shares and buys back no shares. Dividends are equal to output minus a wage bill,

$$
D_{t}=Y_{t}-w_{t} N_{t}
$$

where w_{t} equals the wage and N_{t} is aggregate labor supply. The wage bill is equal to Y_{t} times a time-varying labor share α_{t},

$$
\begin{equation*}
w_{t} N_{t}=\alpha_{t} Y_{t}=>D_{t}=\left(1-\alpha_{t}\right) Y_{t} . \tag{IA1}
\end{equation*}
$$

We rule out short sales in the risky asset:

$$
\theta_{t}^{i} \geq 0
$$

Asset owners not only purchase shares in the risky security, but also trade with one another in a one-period bond with price at time t denoted by q_{t}. The real quantity of bonds is denoted B_{t+1}, where $B_{t+1}<0$ represents a borrowing position. The bond is in zero net supply among asset owners. Asset owners could also have idiosyncratic investment income ζ_{t}^{i}. The gross financial assets of investor i at time t are given by

$$
A_{t}^{i} \equiv \theta_{t}^{i}\left(V_{t}+D_{t}\right)+B_{t}^{i}
$$

The budget constraint for the i th investor is

$$
\begin{align*}
C_{t}^{i}+B_{t+1}^{i} q_{t}+\theta_{t+1}^{i} V_{t} & =A_{t}^{i}+\zeta_{t}^{i} \tag{IA2}\\
& =\theta_{t}^{i}\left(V_{t}+D_{t}\right)+B_{t}^{i}+\zeta_{t}^{i}
\end{align*}
$$

where C_{t}^{i} denotes the consumption of investor i.
A large number of identical nonrich workers, denoted by w, receive labor income and do not participate in asset markets. The budget constraint for the representative worker is therefore

$$
\begin{equation*}
C^{w}=\alpha_{t} Y_{t} \tag{IA3}
\end{equation*}
$$

Equity market clearing requires

$$
\sum_{i} \theta_{t}^{i}=1
$$

Bond market clearing requires

$$
\sum_{i} B_{t}^{i}=0 .
$$

Aggregating (IA2) and (IA3) and imposing both market clearing and (IA1) implies that aggregate (worker plus shareholder) consumption C_{t} is equal to total output Y_{t}. Aggregating over the budget constraint of shareholders shows that their consumption is equal to the capital share times C_{t} :

$$
C_{t}^{S}=D_{t}=\underbrace{\left(1-\alpha_{t}\right)}_{K S_{t}} C_{t} .
$$

A representative shareholder who owns the entire corporate sector will therefore have consumption equal to $C_{t} \cdot K S_{t}$. This reasoning goes through as an approximation if workers own a small fraction of the corporate sector even if there is some risk-sharing in the form of risk-free borrowing and lending between workers and shareholders, as long as any risksharing across these groups is imperfect. The point is that, while individual shareholders can smooth out transitory fluctuations in income by buying and selling assets, shareholders as a whole are less able to do so since purchases and sales of any asset must net to zero across all asset owners.

III. Low Frequency Risk Exposures

This section provides a parametric example of conditions under which longer-horizon (e.g., multi-quarter) risk exposures more accurately measure the true short-horizon (e.g., one-quarter) exposure in finite samples. We start with the SDF

$$
M_{t}=\delta\left(\frac{C_{t}^{s}}{C_{t-1}^{s}}\right)^{-\gamma}\left(\frac{G_{t+1}}{G_{t}}\right)^{-\chi}
$$

or

$$
\log M_{t}=\log (\delta)-\gamma \Delta \ln C_{t}^{s}-\chi \Delta \ln G_{t}
$$

Using the approximation $\log M_{t} \approx M_{t}-1$, we have

$$
\begin{aligned}
M_{t} & \approx 1+\log (\delta)-\gamma \Delta \ln C_{t}^{s}-\chi \Delta \ln G_{t} \\
& \approx b_{0}-\gamma \frac{C_{t}^{s}}{C_{t-1}^{s}}-\chi \frac{G_{t}}{G_{t-1}}
\end{aligned}
$$

where $b_{0}=1+\log (\delta)-\gamma-\chi$. This is an approximately linear two-factor model with factors given by $\frac{C_{t}^{s}}{C_{t-1}^{s}}$ and the latent $\frac{G_{t}}{G_{t-1}}$.

Let stockholder consumption be given by $C_{t}^{s}=C_{t} K S_{t}$, where C_{t} is aggregate (shareholder plus worker) consumption. Aggregate consumption growth is very stable compared to capital share growth in our sample. For the sake of illustration in this appendix, we assume it is constant. Then $K S_{t}$ is the only source of variation in stockholder consumption growth and the two factors are now the latent $\frac{G_{t}}{G_{t-1}}$ and $\frac{K S_{t}}{K S_{t-1}}$. We denote the true value of the parameters with superscript " o ". In this example, the data generating processes (DGPs) of gross returns $R_{j, t+1}, \frac{K S_{t}}{K S_{t-1}}$, and $\frac{G_{t}}{G_{t-1}}$ are presumed to follow

$$
\begin{aligned}
R_{j, t+1} & =1+\beta_{G}^{o} \frac{G_{t}}{G_{t-1}}+\beta_{K S, 1}^{o} \frac{K S_{t}}{K S_{t-1}}+\zeta_{j, t+1} \\
\left(\frac{K S_{t+1}}{K S_{t}}-\mu_{K S}^{o}\right) & =\rho_{K S}^{o}\left(\frac{K S_{t}}{K S_{t-1}}-\mu_{K S}^{o}\right)+\varepsilon_{K S, t+1} \\
\left(\frac{G_{t+1}}{G_{t}}-\mu_{G}^{o}\right) & =\rho_{G}^{o}\left(\frac{G_{t}}{G_{t-1}}-\mu_{G}^{o}\right)+\varepsilon_{G, t+1},
\end{aligned}
$$

where $\zeta_{j, t+1}$ is an idiosyncratic shock. The level of capital share growth appears extremely persistent in the data, with an estimated first-order autoregressive root of 0.97 , a series indistinguishable from one with a unit root in statistical tests. Since there are well-known difficulties with simulating from a process with an autoregressive root that is local-to-unity, we instead simulate from a process calibrated to match autoregressive properties of the growth in the capital share, which is clearly stationary in the data, with a first-order autoregressive coefficient of -0.25 . It should be clear that an autoregressive coefficient of -0.25 in the first-differenced data is tautologically consistent with a DGP that has an autoregressive root of 0.97 in levels.

We let $\zeta_{j, t+1}$ be drawn from Normal distribution $N\left(0, \sigma_{\zeta}^{2}\right)$ and $\left(\varepsilon_{K S, t+1}, \varepsilon_{G, t+1}\right)$ be jointly
drawn from a bivariate Normal distribution, that is,

$$
\begin{aligned}
\zeta_{j, t} & \sim N\left(0, \sigma_{\zeta}^{2}\right) \\
\left(\varepsilon_{G, t}, \varepsilon_{K S, t}\right)^{\prime} & \sim N(0, \Sigma)
\end{aligned}
$$

where

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{G}^{2} & \sigma_{G K S} \\
\sigma_{G K S} & \sigma_{K S}^{2}
\end{array}\right]
$$

Because the latent factor $\frac{G_{t+1}}{G_{t}}$ is omitted from the econometrician's set of risk factors, capital share risk exposures are estimated using the univariate regressions

$$
R_{j, t+H, t}=a+\beta_{K S, H} \frac{K S_{t+H, t}}{K S_{t}}+u_{j, t+1}
$$

for various $H=1,2, \ldots$, where H represents the horizon over which returns and capital share growth are measured and $R_{j, t+H, t}$ denotes the gross return from the end of t to the end of $t+H$. We now consider a parametric example intended to illustrate of the conditions under which longer horizon risk exposures more accurately measure true risk exposures even at short horizons. The parametrization is given in the table below for two different values of the true one-period capital share exposure $\beta_{K S, 1}^{0}$.

Parameters

β_{G}^{0}	$\beta_{K S, 1}^{0}$	$\rho_{K S}$	ρ_{G}	σ_{G}	$\sigma_{K S}$	μ_{G}	$\mu_{K S}$	$\sigma_{G K S}$	σ_{ζ}
0.1	0.10	-0.25	-0.5	1.5	0.45	1.10	1.05	$(-0.21,-0.18,-0.12)$	0.1

The calibration of $\rho_{K S}=-0.25$ is set to match the estimated first order autocorrelation coefficient for capital share growth in the data. Consider a parameterization in which positive exposure to $\frac{G_{t+1}}{G_{t}}$ earns a positive risk premium. In this case, $\beta_{G}^{0}>0$. Key aspects of the above parametrization are that $\sigma_{G K S}<0$ and $\rho_{G}<\rho_{K S}$. That is, the omitted factor is negatively correlated with the included factor $\frac{K S_{t+H, t}}{K S_{t}}$ but more transitory than the included factor. The results for a sample size of $T=202$ as in our data are below. The estimated betas are reported as averages over $N=10,000$ samples for $\widehat{\beta}_{K S, H}$ for two values of $\beta_{K S, 1}^{0}$.

Average Estimated $\widehat{\beta}_{K S, H}$ across 10, 000 Samples

$\beta_{K S, 1}^{0}$	$\sigma_{G K S}$	$H=1$	$H=4$	$H=6$	$H=8$	$H=10$	$H=12$	$H=14$	$H=16$
0.10	-0.21	-0.01	0.01	0.02	0.02	0.03	0.05	0.06	$\mathbf{0 . 0 9}$
0.10	-0.18	0.01	0.03	0.04	0.05	0.06	$\mathbf{0 . 1 0}$	0.12	0.19
0.10	-0.12	0.04	0.06	0.08	$\mathbf{0 . 1 0}$	0.13	0.19	0.26	0.39

Under this parameter configuration, $\widehat{\beta}_{K S, 1}$ is biased downward when the true exposure $\beta_{K S, 1}^{0}$ is positive and biased upward when the true exposure is negative, thereby compressing spreads. But, depending on the value of $\sigma_{G K S}$, the long-horizon estimated exposures $\widehat{\beta}_{K S, H}$ for $H=8,12$, or 16 are better estimates of the true one-period exposure $\beta_{K S, 1}^{0}$. The reason is that the long-horizon regressions attenuate the bias in short-horizon betas created by omitting the less persistent but more volatile G_{t+1} / G_{t}. This factor is a source of noise in the short-horizon regressions but is largely dissipated in the long-horizon relationships. If H is too big, given the parameter values, the bias begins to rise once more. The "optimal" H depends on the data generating process, but this should be informed by the horizon that works best in the one-period return regressions. Since the missing factor is by definition unknown and latent, we can't know what the true data generating process might be. This result should therefore be viewed as a possibility result that shows why, in some cases, longer horizon betas might explain one-period returns better than one-period betas.

IV. GMM Estimations

A. Nonlinear SDF Estimation

Estimates of the benchmark nonlinear models are based on the $N+1$ moment conditions

$$
g_{T}(b)=\mathbb{E}_{T}\left[\begin{array}{c}
\mathbf{R}_{t}^{e}-\lambda_{0} \mathbf{1}_{N}+\frac{\left(M_{t+H, t}-\mu_{H}\right) \mathbf{R}_{t+H, t}^{e}}{\mu_{H}} \tag{IA4}\\
M_{t+H, t}-\mu_{H}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
0
\end{array}\right],
$$

where \mathbb{E}_{T} denotes the sample mean in a sample with T time-series observations, $\mathbf{R}_{t}^{e}=$ [$\left.R_{1, t}^{e} \ldots R_{N, t}^{e}\right]^{\prime}$ denotes an $N \times 1$ vector of excess returns, and the parameters to be estimated are denoted by $\mathbf{b} \equiv\left(\mu_{H}, \gamma, \lambda_{0}, \beta\right)^{\prime}$. The first N moments are the empirical counterparts to $\mathbb{E}\left(R_{j t+1}^{e}\right)=\frac{-\operatorname{Cov}\left(M_{t+1}, R_{t+1}^{e}\right)}{\mathbb{E}\left(M_{t+1}\right)}$, with two differences. First, the parameter λ_{0} (the same in
each return equation) is included to account for a "zero-beta" rate if there is no true riskfree rate and quarterly T-bills are not an accurate measure of the zero-beta rate. Second, the equations to be estimated specify models in which long-horizon H-period empirical covariances between excess returns $\mathbf{R}_{t+H, t}^{e}$ and the SDF $M_{t+H, t}^{k}$ are used to explain shorthorizon (quarterly) average return premia $\mathbb{E}\left(\mathbf{R}_{t}^{e}\right)$. This implements the approach that is discussed in the text regarding low-frequency risk exposures. We estimate models of the form (IA4) for different values of $H .{ }^{4}$

The equations above are estimated using a weighting matrix consisting of an identity matrix for the first N moments, and a very large fixed weight on the last moment used to estimate μ_{H}. By equally weighting the N Euler equation moments, we ensure that the model is forced to explain spreads in the original test assets, and not spreads in reweighted portfolios of these. ${ }^{5}$ This is crucial for our analysis, since we seek to understand the large spreads on the specific portfolios of this study, not on re-weighted portfolios of these. However, it is important to estimate the mean of the SDF accurately. Since the SDF is less volatile than stock returns, this requires placing a large (fixed) weight on the last moment.

For these estimations, we report a cross-sectional R^{2} for the asset pricing block of moments as a measure of how well the model explains the cross-section of quarterly returns. This measure is defined as

$$
\begin{aligned}
R^{2} & =1-\frac{\operatorname{Var}_{c}\left(\mathbb{E}_{T}\left(R_{j}^{e}\right)-\widehat{R}_{j}^{e}\right)}{\operatorname{Var}_{c}\left(\mathbb{E}_{T}\left(R_{i}^{e}\right)\right)} \\
\widehat{R}_{j}^{e} & =\widehat{\lambda}_{0}+\frac{\mathbb{E}_{T}\left[\left(\widehat{M}_{t+H, t}^{k}-\widehat{\mu}_{H}\right) R_{j, t+H, t}^{e}\right]}{\widehat{\mu}_{H}}
\end{aligned}
$$

where $V a r_{c}$ denotes cross-sectional variance, \widehat{R}_{j}^{e} is the average return premium predicted by the model for asset j, and "hats" denote estimated parameters.

B. Linear SDF Estimation

The nonlinear SDF is

[^3]$$
M_{t+H, t}=\delta^{H}\left(\frac{C_{t+H}}{C_{t}}\right)^{-\gamma}\left(\frac{K S_{t+H}}{K S_{t}}\right)^{-\gamma}
$$

We take a linear approximation of the above as follows. Taking logs, we have

$$
\ln \left(M_{t+H, t}\right)=\ln \left(\delta^{H}\right)-\gamma \ln \left(\frac{C_{t+H}}{C_{t}}\right)-\gamma \ln \left(\frac{K S_{t+H}}{K S_{t}}\right) .
$$

Using $\ln (1+x) \approx x$, we have

$$
\begin{aligned}
M_{t+H, t}-1 & \approx \ln \left(M_{t+H, t}\right)=\ln \left(\delta^{H}\right)-\gamma \ln \left(\frac{C_{t+H}}{C_{t}}\right)-\gamma \ln \left(\frac{K S_{t+H}}{K S_{t}}\right) \\
& \approx \ln \left(\delta^{H}\right)-\gamma\left(\frac{C_{t+H}}{C_{t}}-1\right)-\gamma\left(\frac{K S_{t+H}}{K S_{t}}-1\right),
\end{aligned}
$$

or

$$
\begin{aligned}
M_{t+H, t} & \approx \underbrace{\left[1+\ln \left(\delta^{H}\right)\right]}_{b_{0}}-b_{1}\left(\frac{C_{t+H}}{C_{t}}-1\right)-b_{2}\left(\frac{K S_{t+H}}{K S_{t}}-1\right) \\
b_{1} & =b_{2}=\gamma .
\end{aligned}
$$

We use the above linearized $M_{t+H, t}$ in GMM moment conditions (IA4). However, since we are using excess return data, b_{0} and therefore the mean of the SDF μ_{H} cannot be identified in the linear SDF specification. We calibrate $\delta=(0.95)^{\frac{1}{4}}$, which pins down both b_{0} and $\mu_{H} \equiv \mathbb{E}\left(M_{t+H, t}\right)=b_{0}-b_{1} \mathbb{E}\left(\frac{C_{t+H}}{C_{t}}-1\right)-b_{2} \mathbb{E}\left(\frac{K S_{t+H}}{K S_{t}}-1\right)$. We estimate three cases, (i) $b_{1}=b_{2}=\gamma$, (ii) $b_{1}=0, b_{2}=\gamma$, and (iii) $b_{1}=\gamma, b_{2}=0$ using the moment conditions

$$
g_{T}(b)=\mathbb{E}_{T}\left[\begin{array}{c}
\mathbf{R}_{t}^{e}-\lambda_{0} \mathbf{1}_{N}+\frac{\left(M_{t+H, t}-\mu_{H}\right) \mathbf{R}_{t+H, t}^{e}}{\mathbb{E}\left(M_{t+H, t}\right)} \\
\left(\frac{C_{t+H}}{C_{t}}-1\right)-\mu_{c, H} \\
\left(\frac{K S_{t+H}}{K S_{t}}-1\right)-\mu_{K S, H} \\
\left(\frac{C_{t+H}}{C_{t}}-1\right)\left(\frac{K S_{t+H}}{K S_{t}}-1\right)-\sigma_{C, K S} \\
\left(\frac{C_{t+H}}{C_{t}}-1\right)^{2}-\sigma_{c}^{2} \\
\left(\frac{K S_{t+H}}{K S_{t}}-1\right)^{2}-\sigma_{K S}^{2}
\end{array}\right]=\mathbf{0} .
$$

The first block of moment conditions estimate the Euler equations, while the remaining blocks estimate the parameter elements of the covariance matrix of factors. The factor risk prices λ_{H} can be derived from

$$
\begin{aligned}
\mathbb{E}\left(R_{t}^{e}\right) & =\lambda_{0}-\frac{\left(M_{t+H, t}-\mu_{H}\right) \mathbf{R}_{t+H, t}^{e}}{\mu_{H}} \\
& =\lambda_{0}+\frac{\operatorname{Cov}\left(\mathbf{R}_{t+H, t}^{e}, f_{H}^{\prime}\right) b}{\mu_{H}} \\
& =\lambda_{0}+\frac{\operatorname{Cov}\left(\mathbf{R}_{t+H, t}^{e}, f_{H}^{\prime}\right) \operatorname{Cov}\left(f_{H}, f_{H}^{\prime}\right)^{-1} \operatorname{Cov}\left(f_{H}, f_{H}^{\prime}\right) b}{\mu_{H}} \\
& =\lambda_{0}+\frac{\beta_{H} \operatorname{Cov}\left(f_{H}, f_{H}^{\prime}\right) b}{\mu_{H}}
\end{aligned}
$$

where $\mu_{H}=\mathbb{E}\left(M_{t+H, t}\right)$. It follows that

$$
\lambda_{H}=\frac{\operatorname{Cov}\left(f_{H}, f_{H}^{\prime}\right) b}{\mu_{H}}
$$

The estimated $\operatorname{Cov}\left(f_{H}, f_{H}^{\prime}\right)$ are as follows.

$$
.
$$

Table IA.II shows the cross-sectional explanatory power for quarterly expected returns of the model with the restriction $b_{1}=b_{2}$ imposed. Table IA.I shows that the estimates of $\lambda_{C, H}$ are often several times smaller than those of $\lambda_{K S, H}$ despite $b_{1}=b_{2}$. From the estimates of $\operatorname{Cov}\left(f_{H}^{\prime}, f_{H}\right)$, we see that the off-diagonal elements are small, implying that the correlation between the factors is low (equal to -0.04 for $H=4$ and -0.17 for $H=8$). With these estimates, an empirical model that eliminates consumption growth from the SDF altogether is likely to perform about as well as one that includes it. Table IA.III shows that this is the case: little is lost in terms of cross-sectional R^{2} or pricing errors by estimating a model with b_{1} constrained to be zero, compared to the case in which $b_{1}=b_{2}$ in Table IA.II. By contrast, dropping capital share growth from the SDF makes a big difference to the cross-section fit, as shown in Table IA.IV.

C. Two-Pass Regression GMM Estimation

Denote a generic vector of K factors for any model as \mathbf{f}_{t} (where K could be one, as in the capital share SDF). This appendix gives the general approach to our estimation of factor risk prices using two-pass (time-series and cross-sectional) regressions for any linear factor model.

The moment conditions for the expected return-beta representations are

$$
g_{T}(\boldsymbol{b})=\left[\begin{array}{c}
\mathbb{E}(\underbrace{\mathbf{R}_{t+H, t}^{e}}_{N \times 1}-\underbrace{\mathbf{a}}_{N \times 1}-\underbrace{\boldsymbol{\beta}}_{(N \times K)(K \times 1)} \underbrace{\mathbf{f}^{\prime}}_{\mathbf{f}_{t}}) \tag{IA5}\\
\mathbb{E}\left(\left(\mathbf{R}_{t+H, t}^{e}-\mathbf{a}-\boldsymbol{\mathbf { f } _ { t }}\right) \otimes \mathbf{f}_{t}\right) \\
\mathbb{E}(\underbrace{\mathbf{R}_{t}^{e}}_{N \times 1}-\lambda_{0}-\underbrace{\boldsymbol{\beta}}_{(N \times K)} \underbrace{\boldsymbol{\lambda}}_{(K \times 1)})
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] .
$$

where $\mathbf{a}=\left[a_{1} \ldots a_{N}\right]^{\prime}$ and $\boldsymbol{\beta}=\left[\boldsymbol{\beta}_{1} \ldots \boldsymbol{\beta}_{N}\right]^{\prime}$, with parameter vector $\boldsymbol{b}^{\prime}=\left[\mathbf{a}, \boldsymbol{\beta}, \lambda_{0}, \boldsymbol{\lambda}\right]^{\prime}$. To obtain OLS time-series estimates of a and $\boldsymbol{\beta}$ and OLS cross sectional estimates of λ_{0} and $\boldsymbol{\lambda}$, we choose parameters \boldsymbol{b} to set the following linear combination of moments to zero:

$$
\boldsymbol{a}_{T} g_{T}(\boldsymbol{b})=0
$$

where

$$
\boldsymbol{a}_{T}=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{0} & {\left[\mathbf{1}_{N}, \boldsymbol{\beta}\right]^{\prime}}
\end{array}\right] .
$$

The point estimates from GMM are identical to those from Fama-MacBeth (1973) regressions. To see this, to do OLS cross-sectional regressions of $E\left(R_{i, t}\right)$ on $\boldsymbol{\beta}$, recall that the first-order necessary condition for minimizing the sum of squared residuals is

$$
\begin{aligned}
\widetilde{\beta}\left(E\left(R_{i, t}\right)-\widetilde{\beta}\left[\lambda_{0}, \boldsymbol{\lambda}\right]\right) & =0 \Longrightarrow \\
{\left[\lambda_{0}, \boldsymbol{\lambda}\right] } & =(\widetilde{\beta} \widetilde{\beta})^{-1} \widetilde{\beta} E\left(R_{i, t}\right)
\end{aligned}
$$

where $\widetilde{\boldsymbol{\beta}}=\left[\mathbf{1}_{N}, \boldsymbol{\beta}\right]$ to account for the intercept. If we multiply the first moment conditions with the identity matrix and the last moment condition with $(K+1) \times N$ vector $\widetilde{\boldsymbol{\beta}}^{\prime}$, we have OLS time-series estimates of \mathbf{a} and $\boldsymbol{\beta}$ and OLS cross sectional estimates of λ. To estimate the parameter vector \mathbf{b}, we set

$$
\boldsymbol{a}_{T} g_{T}(\mathbf{b})=0
$$

where

$$
\underbrace{\boldsymbol{a}_{T}}_{\text {\#Params } \times \# \text { Moments }}=\left[\begin{array}{cc}
\underbrace{\mathbf{I}_{(K+1) N \times(K+1) N}}_{(K+1) N} & \underbrace{\mathbf{0}}_{(K+1) N \times N} \\
\underbrace{\mathbf{0}_{(K+1)}}_{(K+1) \times(K+1) N} & \underbrace{\left[\mathbf{1}_{N}, \boldsymbol{\beta}\right]^{\prime}}_{(K+1) \times N}
\end{array}\right]
$$

To use Hansen's (1982) formulas for standard errors, we compute the d matrix of derivatives,

We also need the \mathbf{S} matrix, that is, the spectral density matrix at frequency zero of the moment conditions,

$$
\mathbf{S}=\sum_{j=-\infty}^{\infty} E\left(\left[\begin{array}{c}
\mathbf{R}_{t+H, t}^{e}-\mathbf{a}-\boldsymbol{\beta} \mathbf{f}_{t} \\
\left(\mathbf{R}_{t+H, t}^{e}-\mathbf{a}-\boldsymbol{\beta} \mathbf{f}_{t}\right) \otimes \mathbf{f}_{t} \\
\mathbf{R}_{t}^{e}-\lambda_{0}-\boldsymbol{\beta} \boldsymbol{\lambda}
\end{array}\right]\left[\begin{array}{c}
\mathbf{R}_{t+H-j, t-j}^{e}-\mathbf{a}-\boldsymbol{\beta} \mathbf{f}_{t-j} \\
\left(\mathbf{R}_{t+H-j, t-j}^{e}-\mathbf{a}-\boldsymbol{\beta} \mathbf{f}_{t-j}\right) \otimes \mathbf{f}_{t-j} \\
\mathbf{R}_{t-j}^{e}-\lambda_{0}-\boldsymbol{\beta} \boldsymbol{\lambda}
\end{array}\right]\right)
$$

Denote

$$
h_{t}(\mathbf{b})=\left[\begin{array}{c}
\mathbf{R}_{t+H, t}^{e}-\mathbf{a}-\boldsymbol{\beta} \mathbf{f}_{t} \\
\left(\mathbf{R}_{t+H, t}^{e}-\mathbf{a}-\boldsymbol{\beta} \mathbf{f}_{t}\right) \otimes \mathbf{f}_{t} \\
\mathbf{R}_{t}^{e}-\lambda_{0}-\boldsymbol{\beta} \boldsymbol{\lambda}
\end{array}\right]
$$

We employ a Newey-West (1987) correction to the standard errors with lag L by using the estimate

$$
\mathbf{S}_{T}=\sum_{j=-L}^{L}\left(\frac{L-|j|}{L}\right) \frac{1}{T} \sum_{t=1}^{T} h_{t}(\widehat{\mathbf{b}}) h_{t-j}(\widehat{\mathbf{b}})^{\prime}
$$

Asymptotic standard errors for the factor risk price estimates, λ, can be obtained using Hansen's formula for the sampling distribution of the parameter estimates,

$$
\underbrace{\operatorname{Var}(\widehat{\mathbf{b}})}_{[(K+1) N+K+1] \times[(K+1) N+K+1]}=\frac{1}{T}\left(\boldsymbol{a}_{T} \mathbf{d}\right)^{-1} \boldsymbol{a}_{T} \mathbf{S}_{T} \boldsymbol{a}_{T}^{\prime}\left(\boldsymbol{a}_{T} \mathbf{d}\right)^{\prime-1} .
$$

V. Bootstrap Procedure

This section describes the bootstrap procedure for assessing the small sample distribution of cross-sectional R^{2} statistics. The bootstrap consists of the following steps.

1. For each test asset j, we estimate the following time-series regressions on historical data for each H period exposure we study:

$$
\begin{equation*}
R_{j, t+H, t}^{e}=a_{j, H}+\beta_{j, K S, H}\left(\left[K S_{t+H}\right] /\left[K S_{t}\right]\right)+u_{j, t+H, t} . \tag{IA6}
\end{equation*}
$$

We obtain the full-sample estimates of the parameters $a_{j, H}$ and $\beta_{j, K S, H}$, which we denote by $\widehat{a}_{j, H}$ and $\widehat{\beta}_{j, K S, H}$.
2. We estimate an $\operatorname{AR}(1)$ model for capital share growth also on historical data:

$$
\begin{equation*}
\frac{K S_{t+H}}{K S_{t}}=a_{K G, H}+\rho_{H}\left(\frac{K S_{t+H-1}}{K S_{t-1}}\right)+e_{t+H, t} . \tag{IA7}
\end{equation*}
$$

3. We estimate λ_{0} and λ using historical data from cross-sectional regressions,

$$
E\left(R_{j, t}^{e}\right)=\lambda_{0}+\lambda \widehat{\beta}_{j, K S, H}+\epsilon_{j},
$$

where $R_{j, t}^{e}$ is the quarterly excess return. From this regression we obtain the cross sectional fitted errors $\left\{\widehat{\epsilon}_{j}\right\}_{j}$ and historical sample estimates $\widehat{\lambda}_{0}$ and $\widehat{\lambda}$.
4. For each test asset j, we draw randomly with replacement from blocks of the fitted residuals from the above time-series regressions:

$$
\left[\begin{array}{cccc}
\widehat{u}_{1,1+H, 1} & \cdots & \widehat{u}_{N, 1+H, 1} & \widehat{e}_{1+H, 1} \tag{IA8}\\
\widehat{u}_{1,2+H, 2} & & \widehat{u}_{N, 2+H, 2} & \widehat{e}_{2+H, 2} \\
\vdots & & \vdots & \vdots \\
\widehat{u}_{1, T, T-H} & \cdots & \widehat{u}_{N, T, T-H} & \widehat{e}_{T, T-H}
\end{array}\right]
$$

The m th bootstrap sample $\left\{u_{1, t+H, t}^{(m)}, \ldots, \widehat{u}_{N, T, T-H}^{(m)}, e_{t+H, t}^{(m)}\right\}_{t=1}^{H}$ is obtained by sampling blocks of the raw data randomly with replacement and laying them end-to-end in the order sampled until a new sample of observations of length equal to the historical data set is obtained. To choose the block length, we follow the recommendation of Hall, Horowitz, and Jing (1995), who show that the asymptotically optimal block length for estimating a symmetrical distribution function is $l \propto T^{1 / 5}$; see also Horowitz (2003). For the results reported in the
text, we use a block length equal to $T^{1 / 5}=3$, but we check the robustness of our results to lengths of $5,8,12$, and 20 and find little difference in the resulting confidence sets.

Next, we recursively generate new data series for $\frac{K S_{t+H}}{K S_{t}}$ by combining the initial value of $\frac{K S_{1+H}}{K_{1}}$ in our sample along with the estimates from historical data $\widehat{a}_{K G, H}, \widehat{\rho}_{H}$ and the new sequence of errors $\left\{e_{t+H, t}^{(m)}\right\}_{t}$, thereby generating an m th bootstrap sample on capital share growth $\left\{\left(\frac{K S_{t+H}}{K S_{t}}\right)^{(m)}\right\}_{t}$. We then generate new samples of observations on longhorizon returns $\left\{R_{j, t+H, t}^{(m)}\right\}_{t}$ from new data on $\left\{u_{j, t+H, t}^{(m)}\right\}_{t}$ and $\left\{\left(\frac{K S_{t+H}}{K S_{t}}\right)^{(m)}\right\}_{t}$ and the sample estimates $\widehat{a}_{j, H}$ and $\widehat{\beta}_{j, K S, H}$.
5. We generate an m th observation $\beta_{j, K S, H}^{(m)}$ from a regression of $\left\{R_{j, t+H, t}^{e(m)}\right\}_{t}$ on the m th observation $\left\{\left(\frac{K S_{t+H}}{K S_{t}}\right)^{(m)}\right\}_{t}$ and a constant.
6. We obtain an m th bootstrap sample $\left\{\epsilon_{j}^{(m)}\right\}_{j}$ by sampling the fitted errors $\left\{\hat{\epsilon}_{j}\right\}_{j}$ randomly with replacement and laying them end-to-end in the order sampled until a new sample of observations of length N equal to the historical cross-sectional sample is obtained. We then generate new samples of observations on quarterly average excess returns $\left\{E\left(R_{j, t}^{e(m)}\right)\right\}_{j}$ from new data on $\left\{\epsilon_{j}^{(m)}\right\}_{j}$ and $\left\{\beta_{j, K S, H}^{(m)}\right\}_{j}$ and the sample estimates $\hat{\lambda}_{0}$ and $\hat{\lambda}$.
7. We form the m th estimates $\lambda_{0}^{(m)}$ and $\lambda^{(m)}$ by regressing $\left\{E\left(R_{j, t}^{e(m)}\right)\right\}_{j}$ on the m th observation $\left\{\beta_{j, K S, H}^{(m)}\right\}_{j}$ and a constant. We store the m th sample cross-sectional $\bar{R}^{2}, \bar{R}^{(m) 2}$, along with the m th values of $\lambda_{0}^{(m)}$ and $\lambda^{(m)}$.
8. We repeat steps 4 to 710,000 times, and report the 95% confidence intervals for $\bar{R}^{(m) 2}$, $\lambda_{0}^{(m)}$, and $\lambda^{(m)}$.

A. Procedure Controlling for Other Pricing Factors

The bootstrap for cross-sectional regressions in which we control for other pricing factors is modified as follows.

1. Follow steps 1 to 5 separately for $K S$ and the additional pricing factor(s) f and generate $\beta_{j, K S, H}^{(m)}$ and $\beta_{j, f, H}^{(m)}$ for the m th bootstrap.
2. Obtain an m th bootstrap sample $\left\{\epsilon_{j}^{(m)}\right\}_{j}$ from the cross-sectional regression

$$
E\left(R_{j, t}^{e}\right)=\lambda_{0}+\lambda_{K S} \widehat{\beta}_{j, K S, H}+\lambda_{H S} \beta_{j, f, H}+\epsilon_{j} .
$$

As before, sample the fitted errors $\left\{\widehat{\epsilon}_{j}\right\}_{j}$ randomly with replacement, laying them end-to-end in the order sampled until a new sample of observations of length N equal to the historical cross-sectional sample is obtained. Generate new samples of observations on quarterly average excess returns $\left\{E\left(R_{j, t}^{e(m)}\right)\right\}_{j}$ from new data on $\left\{\epsilon_{j}^{(m)}\right\}_{j}$ and $\left\{\beta_{j, K S, H}^{(m)}, \beta_{j, f, H}^{(m)}\right\}_{j}$ and the sample estimates $\hat{\lambda}_{0}, \widehat{\lambda}_{K S}$, and $\lambda_{H S}$.
3. Form the m th estimates $\lambda_{0}^{(m)}$ and $\lambda^{(m)}=\left(\lambda_{K S}^{(m)}, \lambda_{f}^{(m)}\right)$ by regressing $\left\{E\left(R_{j, t}^{e(m)}\right)\right\}_{j}$ on the m th observation $\left\{\beta_{j, K S, H}^{(m)}, \beta_{j, f, H}^{(m)}\right\}_{j}$ and a constant. We store the m th sample crosssectional $\bar{R}^{2}, \bar{R}^{(m) 2}$.
4. We repeat steps 1 to 310,000 times, and report the 95% confidence interval of $\bar{R}^{(m)^{2}}$, $\lambda_{K S}^{(m)}$, and $\lambda_{f}^{(m)}$.

B. Bootstrap Under the Null of No Cross-Sectional Explanatory Power

We also conduct a bootstrap simulation under the null hypothesis that $\beta_{j, K S, 1}=\bar{\beta}_{K S, 1}$ for all j. The steps in the bootstrap are the same as above with the following exceptions: in Step 1 we estimate the time-series regressions on historical data for $H=1$ period exposures and calibrate $\beta_{j, K S, 1}$ to be the average value across assets, for all j. In Step 3 , we set $\lambda_{K S}=0$, so the portfolios are completely independent. One-period returns are then cumulated up to H-period returns and the bootstrap confidence intervals under the null of no cross-sectional explanatory power are computed. Table IA.VII below shows that the 95% bootstrapped confidence interval for the cross-sectional \bar{R}^{2} under the null of no explanatory power ranges from values close to zero to values typically around 0.17 or smaller. By contrast, the estimated \bar{R} are much higher and fall well outside these ranges. The REV portfolios exhibit the largest ranges for the cross-sectional \bar{R} under the null, with the upper end of the range about 0.4 . These values are still much smaller than the estimated \bar{R} for these portfolios. In short, the magnitude of explanatory power that we find is too large to be accounted for by sampling error in samples of the size we currently have.

VI. Internet Appendix Tables and Figures

Table IA.I

Risk Price Estimates of Linear Capital Share SDF

This table reports estimates of risk prices λ_{H}. All estimates are multiplied by 100 . The estimated b is from GMM estimation imposing $b_{1}=b_{2}$. Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses. $* *$ and $*$ indicate significance at the 5% and 10% level, respectively. The sample spans the period 1963Q3 to 2013Q4.

$\lambda_{H}=-\mathbb{E}\left(M_{t+H, t}\right)^{-1} \operatorname{Cov}\left(f_{H}^{\prime}, f_{H}\right) b, b=\left[b_{1}, b_{2}\right]^{\prime}, b_{1}=b_{2}$						
H	Panel A: Size/BM		Panel B: REV		Panel C: Size/INV	
	4	8	4	8	4	8
$\lambda_{C, H}$	$0.17^{* *}$	$0.15{ }^{* *}$	0.15*	0.12*	0.14*	0.18*
	(2.22)	(2.81)	(1.82)	(1.69)	(1.68)	(1.77)
$\lambda_{K S, H}$	0.61 **	0.53**	0.53	0.30	0.49*	0.44*
	(2.35)	(2.97)	(1.79)	(1.59)	(1.76)	(1.92)
	Panel D: Size/OP		Panel E: All Equities		Panel F: Bonds	
H	4	8	4	8	4	8
$\lambda_{C, H}$	0.16*	0.18	0.15*	$0.17{ }^{* *}$	0.13*	0.11*
	(1.72)	(1.36)	(1.93)	(2.01)	(1.95)	(1.72)
$\lambda_{K S, H}$	0.57*	0.45	0.55**	0.43**	0.56*	0.31
	(1.84)	(1.50)	(2.02)	(2.19)	(1.74)	(1.52)
	Panel G: Sovereign Bonds		Panel H: Options		Panel I: CDS	
H	4	8	4	8	4	8
$\lambda_{C, H}$	0.04	0.07	0.11	1.17	0.19	0.34*
	(0.34)	(0.81)	(1.03)	(1.31)	(1.46)	(1.74)
$\lambda_{K S, H}$	0.92	0.52	1.01**	0.71*	0.78	0.59*
	(1.18)	(1.07)	(2.25)	(1.81)	(1.24)	(1.75)

Table IA.II

Parameter Estimates of Linear Capital Share SDF

This table reports GMM estimates of linear capital share SDF. The cross-sectional R^{2} is defined as $R^{2}=1-\frac{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)}{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)}$, where the fitted value $\widehat{R}_{i}^{e}=\widehat{\alpha}+\frac{\mathbb{E}\left[\left(M_{t+H, t}^{k}-\widehat{\mu}\right) \mathbf{R}_{t+H, t}^{e}\right]}{\widehat{\mu}}$. The pricing error is defined as $R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)^{2}}$ and $R M S R=$ $\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)^{2}} . * *$ and $*$ indicate significance at the 5% and 10% level, respectively. Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses. The sample spans the period 1963Q3 to 2013Q4.

$\mathrm{SDF}: M_{t+H, t}=b_{0}-b_{1}\left(\frac{C_{t+H}}{C_{t}}-1\right)-b_{2}\left(\frac{K S_{t+H}}{K S_{t}}-1\right)$						
$b_{1}=b_{2}=b$						
	Panel A: Size/BM		Panel B: REV		Panel C: Size/INV	
H	4	8	4	8	4	8
b	$7.38^{* *}$	$3.21^{* *}$	$6.57^{* *}$	$2.24 *$	$6.16{ }^{* *}$	$3.14{ }^{* *}$
	(2.69)	(3.84)	(2.09)	(1.83)	(1.97)	(2.42)
R^{2}	0.56	0.83	0.64	0.83	0.41	0.69
$\frac{R M S E}{R M S R}$	0.20	0.12	0.14	0.09	0.21	0.15
	Panel D: Size/OP		Panel E: All Equities		Panel F: Bonds	
H	4	8	4	8	4	8
b	$6.95{ }^{* *}$	$3.17 *$	$6.74^{* *}$	$3.04{ }^{* *}$	$7.82{ }^{* *}$	2.52
	(2.09)	(1.91)	(2.29)	(2.74)	(2.06)	(1.64)
R^{2}	0.59	0.62	0.53	0.73	0.76	0.69
$\frac{R M S E}{R M S R}$	0.17	0.17	0.19	0.15	0.23	0.26
	Panel G: Sovereign Bonds		Panel H: Options		Panel I: CDS	
H	4	8	4	8	4	8
b	13.37*	4.11	15.90**	$5.99^{* *}$	12.22*	$5.32{ }^{* *}$
	(1.80)	(1.43)	(3.84)	(2.99)	(1.74)	(2.14)
R^{2}	0.85	0.84	0.97	0.96	0.33	0.52
$\frac{R M S E}{R M S R}$	0.18	0.17	0.14	0.15	0.75	0.63

Table IA.III
Parameter Estimates of Univariate Capital Share SDF
This table reports GMM estimates of linear capital share SDF. The cross-sectional R^{2} is defined as $R^{2}=1-\frac{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)}{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)}$, where the fitted value $\widehat{R}_{i}^{e}=\widehat{\alpha}+\frac{\mathbb{E}\left[\left(M_{t+H, t}^{k}-\widehat{\mu}\right) \mathbf{R}_{t+H, t}^{e}\right]}{\widehat{\mu}}$. The pricing error is defined as $R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)^{2}}$ and $R M S R=$ $\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)^{2}} . * *$ and $*$ indicate significance at the 5% and 10% level, respectively. Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses. The sample spans the period 1963Q3 to 2013Q4.

$\mathrm{SDF}: M_{t+H, t}=b_{0}-b_{1}\left(\frac{C_{t+H}}{C_{t}}-1\right)-b_{2}\left(\frac{K S_{t+H}}{K S_{t}}-1\right)$						
$b_{1}=0$						
	Panel A: Size/BM		Panel B: REV		Panel C: Size/INV	
H	4	8	4	8	4	8
b_{2}	$\begin{gathered} 10.10^{* *} \\ (1.99) \end{gathered}$	4.90**	8.48^{*}(1.82)	2.65	$\begin{gathered} 8.15 \\ (1.62) \end{gathered}$	3.94*
		(2.96)		(1.59)		(1.86)
$\begin{aligned} & R^{2} \\ & \frac{R M S E}{R M S R} \end{aligned}$	0.51	0.81	0.74	0.88	0.40	0.62
	0.21	0.13	0.12	0.08	0.21	0.17
	Panel D: Size/OP		Panel E: All Equities		Panel F: Bonds	
H	4	8			4	8
b_{2}	9.47^{*}	4.17	9.15^{*}	4.12**	12.32^{*}	4.03*
	(1.89)	(1.53)	(1.89)	(2.05)	(1.81)	(1.86)
R^{2}	0.77	0.77	0.56	0.73	0.88	0.86
$\frac{R M S E}{R M S R}$	0.13	0.13	0.19	0.15	0.17	0.17
	Panel G: Sovereign Bonds		Panel H: Options		Panel I: CDS	
H	4	8	4	8	4	8
b_{2}	19.41	5.59*	29.16**	$12.04 * *$	18.62*	7.15**
	(1.46)	(1.78)	(2.74)	(2.11)	(1.92)	(2.53)
R^{2}	0.86	0.58	0.95	0.81	0.82	0.94
$\frac{R M S E}{R M S R}$	0.17	0.27	0.18	0.35	0.38	0.23

Table IA.IV

Parameter Estimates of Univariate Consumption SDF
This table reports GMM estimates of linear consumption SDF. The cross-sectional R^{2} is defined as $R^{2}=1-\frac{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)}{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)}$, where the fitted value $\widehat{R}_{i}^{e}=\widehat{\alpha}+\frac{\mathbb{E}\left[\left(M_{t+H, t}^{k}-\widehat{\mu}\right) \mathbf{R}_{t+H, t}^{e}\right]}{\widehat{\mu}}$. The pricing error is defined as $R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)^{2}}$ and $R M S R=$ $\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)^{2}} . * *$ and $*$ indicate significance at the 5% and 10% level, respectively. Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses. The sample spans the period 1963Q3 to 2013Q4.

$\text { SDF: } M_{t+H, t}=b_{0}-b_{1}\left(\frac{C_{t+H}}{C_{t}}-1\right)-b_{2}\left(\frac{K S_{t+H}}{K S_{t}}-1\right)$						
$b_{2}=0$						
	Panel A: Size/BM		Panel B: REV		Panel C: Size/INV	
H	4	8	4	8	4	8
b_{1}	$15.11^{* *}$	4.53 **	-4.70	2.19	$\begin{gathered} 10.46^{*} \\ (1.92) \end{gathered}$	2.93
	(2.66)	(2.21)	(-0.35)	(0.88)		(1.47)
R^{2}	0.30	0.33	0.00	0.01	$\begin{gathered} (1.92) \\ 0.13 \end{gathered}$	0.11
$\frac{R M S E}{R M S R}$	0.25	0.25	0.23	0.22	$\begin{aligned} & 0.13 \\ & 0.25 \end{aligned}$	0.26
	Panel D: Size/OP		Panel E: All Equities		Panel F: Bonds	
H	4	8	4	8	48	
b_{1}	-8.87	-1.41	7.95	2.69*	10.52	2.09
	(-0.66)	(-0.49)	(1.64)	(1.69)	(1.25)	(0.92)
R^{2}	0.06	0.02	0.07	0.10	0.17	0.07
$\frac{R M S E}{R M S R}$	0.26	0.28	0.27	0.27	0.43	0.45
	Panel G: Sovereign Bonds		Panel H: Options		Panel I: CDS	
H	4	8	4	8	4	8
b_{1}	7.04	2.69	$34.40^{* *}$	10.73*	-47.05	-10.38
	(0.69)	(0.78)	(2.48)	(1.91)	(-0.89)	(-1.48)
R^{2}	0.05	0.20	0.99	0.99	0.45	0.28
$\frac{R M S E}{R M S R}$	0.44	0.37	0.09	0.08	0.68	0.76

Table IA.V

Risk Price Estimates of Univariate Capital Share SDF

This table reports GMM estimates of linear capital share SDF. The cross-sectional R^{2} is defined as $R^{2}=1-\frac{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)}{\operatorname{Var}_{c}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)}$, where the fitted value $\widehat{R}_{i}^{e}=\widehat{\alpha}+\frac{\mathbb{E}\left[\left(M_{t+H, t}^{k}-\widehat{\mu}\right) \mathbf{R}_{t+H, t}^{e}\right]}{\widehat{\mu}}$. The pricing error is defined as $R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)-\widehat{R}_{i}^{e}\right)^{2}}$ and RMSR= $\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbb{E}\left(R_{i}^{e}\right)\right)^{2}} . * *$ and $*$ indicate significance at the 5% and 10% level, respectively. Serial correlation and heteroskedasticity robust t-statistics are reported in parentheses. The sample spans the period 1963Q3 to 2013Q4.

	$\boldsymbol{\lambda}_{H}=-\mathbb{E}\left(M_{t+H, t}\right)^{-1} \operatorname{Cov}\left(\mathbf{f}_{H}, \mathbf{f}_{H}^{\prime}\right) \mathbf{b}, \mathbf{b}=\left[b_{1}, b_{2}\right]^{\prime}, b_{1}=0$					
	Panel A: Size/BM		Panel B: REV		Panel C: Size/INV	
	4	8	4	8	4	8
$\lambda_{K S, H}$	0.74**	0.69**	0.62*	0.37	0.59	0.55*
	(2.00)	(2.82)	(1.77)	(1.52)	(1.61)	(1.82)
$\begin{aligned} & H \\ & \lambda_{K S, H} \end{aligned}$	Panel D: Size/OP		Panel E: All Equities		Panel F: Bonds	
	4	8	4	8	48	
	0.69*	0.58	$\begin{aligned} & 0.67^{*} \\ & (1.90) \end{aligned}$	$\begin{gathered} 0.57^{* *} \\ (2.00) \\ \hline \end{gathered}$	0.81*	0.54*
	(1.90)	(1.51)			(1.87)	(1.95)
	Panel G: Sovereign Bonds		Panel H: Options		Panel I: CDS	
H	4	8	4	8	4	8
$\lambda_{K S, H}$	1.50	0.99*	1.87 **	1.72*	1.24*	0.83**
	(1.36)	(1.95)	(2.41)	(1.66)	(1.81)	(2.93)

Table IA.VI
Nonlinear GMM Estimation of Capital Share SDF
This table reports estimates of risk prices λ_{H}. All estimates are multiplied by 100. The estimated b is from GMM estimation imposing $b_{1}=0$. Serial correlation and heteroskedasticity robust t-statistics are reported in parenthesEs. $* *$ and $*$ indicate significance at the 5% and 10% level, respectively. The sample spans the period 1963Q3 to 2013Q4.

$\mathrm{SDF}: M_{t+H, t}=\delta^{H}\left(\frac{C_{t+H}}{C_{t}} \frac{K S_{t+H}}{K S_{t}}\right)$						
H	Panel A: Size/BM		Panel B: REV		Panel C: Size/INV	
	4	8	4	8	4	8
λ_{0}	-0.07	0.66	0.42	1.14	0.42	0.67
	(-0.07)	(0.64)	(0.36)	(1.30)	(0.39)	(0.70)
γ	$10.41^{* *}$	$4.46{ }^{* *}$	8.14	2.93	8.13	$4.54 * *$
	(2.19)	(3.27)	(1.54)	(1.59)	(1.54)	(2.18)
R^{2}	0.56	0.84	0.57	0.84	0.40	0.71
$\frac{R M S E}{R M S R}$	0.20	0.12	0.15	0.09	0.21	0.15
	Panel D: Size/OP		Panel E: All Equities		Panel F: Bonds	
	4	8	4	8	4	8
λ_{0}	-0.13	0.63	0.14	0.75	0.38	0.25
	(-0.12)	(0.63)	(0.14)	(0.82)	(1.63)	(1.20)
γ	10.16*	4.48	9.28*	4.23 **	9.31*	3.10
	(1.73)	(1.49)	(1.85)	(2.46)	(1.75)	(1.48)
R^{2}	0.63	0.62	0.53	0.74	0.76	0.68
$\frac{R M S E}{R M S R}$	0.16	0.17	0.19	0.15	0.23	0.26
	Panel G: Sovereign Bonds		Panel H: Options		Panel I: CDS	
H	4	8	4	8	4	8
λ_{0}	0.20	0.41	-1.56	-0.29	$-0.18^{* *}$	$-0.30^{* *}$
	(0.27)	(0.75)	(-1.46)	(-0.23)	(-2.48)	(-3.70)
γ	16.41	5.45	23.70 **	9.02**	14.34	7.44
	(1.49)	(1.18)	(2.30)	(2.15)	(1.27)	(1.59)
R^{2}	0.88	0.83	0.96	0.96	0.30	0.49
$\frac{R M S E}{R M S R}$	0.16	0.17	0.17	0.16	0.76	0.64

Table IA.VII

Bootstrap under the Null

This table reports estimates of risk prices λ_{H}. All estimates are multiplied by 100. Bootstrapped 95% confidence intervals are reported in square brackets under the null of no cross-sectional explanatory power. The sample spans the period 1963Q3 to 2013Q4.

$\mathbb{E}\left(R_{j, t}^{e}\right)=\lambda_{0}+\boldsymbol{\lambda}_{H}^{\prime} \boldsymbol{\beta}_{H}+\epsilon_{j}$, Estimates of Factor Risk Prices λ_{H}								
Panel A: Size/BM					Panel B: REV			
H	Constant	$\frac{K S_{t+H}}{K S_{t}}$	\bar{R}^{2}	$\frac{R M S E}{R M S R}$	Constant	$\frac{K S_{t+H}}{K S_{t}}$	\bar{R}^{2}	$\frac{R M S E}{R M S R}$
$\begin{aligned} & 4 \\ & \text { Base } \end{aligned}$	$\begin{gathered} 0.65 \\ {[0.01,1.23]} \end{gathered}$	$\begin{gathered} 0.74 \\ {[0.42,1.08]} \end{gathered}$	$\begin{gathered} 0.51 \\ {[0.13,0.77]} \end{gathered}$	0.19	$\begin{gathered} 0.83 \\ {[0.35,1.32]} \end{gathered}$	$\begin{gathered} 0.63 \\ {[0.33,0.92]} \end{gathered}$	$\begin{gathered} 0.70 \\ {[0.17,0.91]} \end{gathered}$	0.11
Under Null	[-0.11, 1.40]	[-0.01, 0.01]	[-0.04, 0.16]		[0.16, 1.50]	[-0.02, 0.02]	-0.12, 0.43]	
$\begin{aligned} & 8 \\ & \text { Base } \end{aligned}$	$\begin{gathered} 1.55 \\ {[1.39,1.71]} \end{gathered}$	$\begin{gathered} 0.68 \\ {[0.53,0.83]} \end{gathered}$	$\begin{gathered} 0.80 \\ {[0.52,0.91]} \end{gathered}$	0.12	$\begin{gathered} 1.73 \\ {[1.62,1.84]} \end{gathered}$	$\begin{gathered} 0.41 \\ {[0.30,0.50]} \end{gathered}$	$\begin{gathered} 0.86 \\ {[0.68,0.96]} \end{gathered}$	0.08
Under Null	[1.39, 1.72]	[$-0.00,0.00$]	[-0.04, 0.16]		[1.59, 1.86]	[-0.05, 0.04]	[$-0.12,0.40$]	
Panel C: Size/INV					Panel D: Size/OP			
H	Constant	$\frac{K S_{t+H}}{K S_{t}}$	\bar{R}^{2}	$\frac{R M S E}{R M S R}$	Constant	$\frac{K S_{t+H}}{K S_{t}}$	\bar{R}^{2}	$\frac{R M S E}{R M S R}$
$\begin{aligned} & 4 \\ & \text { Base } \end{aligned}$	$\begin{gathered} 0.92 \\ {[0.20,1.54]} \end{gathered}$	$\begin{gathered} 0.61 \\ {[0.27,0.96]} \end{gathered}$	$\begin{gathered} 0.39 \\ {[0.03,0.70]} \end{gathered}$	0.19	$\begin{gathered} 0.60 \\ {[0.26,0.94]} \end{gathered}$	$\begin{gathered} 0.70 \\ {[0.54,0.87]} \end{gathered}$	$\begin{gathered} 0.78 \\ {[0.48,0.89]} \end{gathered}$	0.12
Under Null	[-0.09, 1.87]	[-0.02, 0.02]	[-0.04, 0.16]		[0.17, 1.02]	[-0.01, 0.01]	[-0.04, 0.16]	
$\begin{aligned} & 8 \\ & \text { Base } \end{aligned}$	$\begin{gathered} 1.70 \\ {[1.50,1.90]} \end{gathered}$	$\begin{gathered} 0.55 \\ {[0.37,0.74]} \end{gathered}$	$\begin{gathered} 0.62 \\ {[0.29,0.81]} \end{gathered}$	0.16	$\begin{gathered} 1.61 \\ {[1.46,1.77]} \end{gathered}$	$\begin{gathered} 0.57 \\ {[0.45,0.71]} \end{gathered}$	$\begin{gathered} 0.76 \\ {[0.42,0.90]} \end{gathered}$	0.12
Under Null	[1.43, 1.97]	[-0.01, 0.01]	[-0.04, 0.17]		[1.45, 1.77]	[$-0.00,0.00$]	[$-0.04,0.16$]	
Panel E: All Equities					Panel F: All Assets			
H	Constant	$\frac{K S_{t+H}}{K S_{t}}$	\bar{R}^{2}	$\frac{R M S E}{R M S R}$	Constant	$\frac{K S_{t+H}}{K S_{t}}$	R^{2}	$\frac{R M S E}{R M S R}$
$\begin{aligned} & 4 \\ & \text { Base } \end{aligned}$	$\begin{gathered} 0.74 \\ {[0.45,1.01]} \end{gathered}$	$\begin{gathered} 0.68 \\ {[0.54,0.83]} \end{gathered}$	$\begin{gathered} 0.58 \\ {[0.28,0.73]} \end{gathered}$	0.17	$\begin{gathered} 0.39 \\ {[-0.91,0.63]} \end{gathered}$	$\begin{gathered} 0.83 \\ {[0.71,1.21]} \end{gathered}$	$\begin{gathered} 0.78 \\ {[0.28,0.79]} \end{gathered}$	0.25
Under Null	[0.37, 1.10]	[-0.01, 0.01]	[-0.01, 0.05]		[$-0.26,0.11$]	[-0.01, 0.01]	[$-0.01,0.03$]	
$\begin{aligned} & 8 \\ & \text { Base } \end{aligned}$	$\begin{gathered} 1.65 \\ {[1.56,1.74]} \end{gathered}$	$\begin{gathered} 0.57 \\ {[0.49,0.66]} \end{gathered}$	$\begin{gathered} 0.74 \\ {[0.51,0.84]} \end{gathered}$	0.14	$\begin{gathered} 1.34 \\ {[0.81,1.72]} \end{gathered}$	$\begin{gathered} 0.63 \\ {[0.63,0.96]} \end{gathered}$	$\begin{gathered} 0.44 \\ {[0.42,0.84]} \end{gathered}$	0.41
Under Null	[1.55, 1.74]	[-0.00, 0.00]	[-0.01, 0.05]		[0.51, 0.75]	[$-0.00,0.00$]	[$-0.01,0.03$]	

REFERENCES

Adrian, Tobias, Erkko Etula, and Tyler Muir, 2014, Financial intermediaries and the crosssection of asset returns, Journal of Finance 69, 2557-2596.

Cochrane, John H., 2005, Financial Markets and the Real Economy, in Richard Roll, eds.: The International Library of Critical Writings in Financial Economics, forthcoming (Princeton University Press).

Fama, Eugene F., and Kenneth R. French, 1993, Common Risk Factors in the Returns on Stocks and Bonds, Journal of Financial Economics 33, 3-56.

Fama, Eugene F., and James MacBeth, 1973, Risk, Return and Equilibrium: Empirical Tests, Journal of Political Economy 81, 607-636.

Gomme, Paul, and Peter Rupert, 2004, Measuring Labor's Share of Income, Federal Reserve Bank of Cleveand Policy Discussion Papers.

Hall, P., Joel L. Horowitz, and B. Y. Jing, 1995, On Blocking Rules for the Bootstrap with Dependent Data, Biometrika 82, 561-574.

Hansen, Lars Peter, 1982, Large Sample Properties of Generalized Methods of Moments Estimators, Econometrica 50, 1029-54.

Horowitz, Joel L., 2003, The Bootstrap, in James J. Heckman, and Edward Leamer, eds.: Handbook of Econometrics ., vol. 5 (Elsevier Science B.V.: North Holland).

Newey, Whitney K., and Kenneth D. West, 1987, A Simple, Positive Semidefinite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica 55, 703708.

Parker, Jonathan, and Christian Julliard, 2004, Ultimate Consumption Risk and the CrossSection of Expected Returns, Journal of Political Economy 113, 185-222.

[^0]: *Citation format: Lettau, Martin, Sydney C. Ludvigson, and Sai Ma, Internet Appendix for "Capital Share Risk in U.S. Asset Pricing," Journal of Finance [DOI STRING]. Please note: Wiley is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the authors of the article.

[^1]: ${ }^{1}$ http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Benchmark_Factors_Quarterly.zip.
 ${ }^{2}$ http://faculty.som.yale.edu/tylermuir/LEVERAGEFACTORDATA_001.txt.

[^2]: ${ }^{3}$ http://www.federalreserve.gov/apps/fof/DisplayTable.aspx?t=l.128.

[^3]: ${ }^{4}$ This approach and underlying model are different than those in Parker and Julliard (2004), who studied covariances between short-horizon returns and future consumption growth over longer horizons. We do not follow this approach here because such covariances are unlikely to capture low-frequency components in the stock return-capital share relationship, which requires relating long-horizon returns to long-horizon SDFs.
 ${ }^{5}$ See Cochrane (2005) for a discussion of this issue.

