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1 Introduction

A growing academic literature has offered a myriad of competing explanations for why

financial markets react strongly to the actions and announcements of central banks. A

classic view is that surprise central bank announcements proxy for shocks to a nominal

interest rate rule of the type emphasized by Taylor (1993), which have short-run affects

on the real economy in a manner consistent with canonical New Keynesian models

(e.g., Christiano, Eichenbaum, and Evans (2005)). More recently, other hypotheses have

emerged, including the effects such announcements have on financial market risk premia,

the information they impart about the state of the economy (the “Fed information

effect”), or the role they play in revising the public’s understanding of the central bank’s

reaction function and objectives.

As the mushrooming debate over how to interpret this evidence indicates, many

questions about the interplay between markets and monetary policy remain unanswered.

In this paper we consider three of them. First, theories focused on a single channel of

monetary transmission are useful for elucidating its marginal effects, but may reveal

only part of the overall picture. To what extent are several competing explanations or

others entirely playing a role simultaneously? Second, monetary policy communications

cover a range of topics from interest rate policy, to forward guidance, to quantitative

interventions, to the macroeconomic outlook. How do these varied communications

affect market participants’perceptions of the primitive economic sources of risk hitting

the economy in real time? Third, high frequency events studies only capture the causal

effects of the surprise component of a policy announcement, a lower bound on its overall

impact. How much of the causal influence of shifting monetary policy occurs outside of

tight windows around Fed communications, effects that are by construction impossible

to observe from high-frequency event studies?

Our contribution to addressing these questions is to integrate a high-frequency mone-

tary event study into a mixed-frequency macro-finance model and structural estimation.

We examine Fed communications alongside both high- and lower-frequency data through

the lens of a structural equilibrium asset pricing model with New Keynesian style macro-

economic dynamics, using dozens of series ranging from minutely financial market data

to biannual survey forecast data in our structural estimation. The model and estima-

tion allow us to infer jumps in investor beliefs about the latent state of the economy,

the perceived sources of economic risk, and the future conduct of monetary policy, all

in response to Fed news. The novelty of this approach allows us to investigate a va-

riety of possible explanations for why markets respond strongly and swiftly to central

bank actions and announcements, providing granular detail on the perceived economic

sources of risk responsible for observed forecast revisions and financial market volatility.

The mixed-frequency structural estimation further permits us to quantify the causal ef-
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fects of changing monetary policy that may occur outside of tight windows surrounding

Fed communications. The general approach can be applied in a wide variety of other

structural and semi-structural settings, whenever a granular understanding of financial

market responses to almost any type of news is desired.

In this paper, we apply the approach to a two-agent asset pricing model with New

Keynesian style macroeconomic dynamics in which the two agents have heterogeneous

beliefs, as in Bianchi, Lettau, and Ludvigson (2022). One agent is a representative “in-

vestor” who is forward-looking, reacts swiftly to news, and earns income solely from

investments in the stock market and a one-period nominal bond. Macroeconomic dy-

namics are specified by a set of equations similar to those in New Keynesian models, and

can be thought of as driven by a representative “household/worker”that supplies labor

and has access to the nominal bond but holds no stock market wealth. Unlike investors,

the household/worker forms expectations in a backward-looking manner using adaptive

learning rules.

An important feature of our model is that the conduct of monetary policy is not

static over time, but is instead subject to infrequent nonrecurrent regime shifts, or

“structural breaks,”that take the form of shifts in the parameters of a nominal interest

rate rule. Such regime changes in what we refer to as the conduct of monetary policy

give rise to endogenously long-lasting changes in real interest rates in the model and are

conceptually distinct from those generated by the monetary policy shock, an innovation

in the nominal rate that is uncorrelated with inflation, economic growth, and shifts in

the policy rule parameters.

We explicitly model investor beliefs about future regime change in the conduct of

monetary policy. Investors in the model closely monitor central bank communications for

information that would lead them to revise their perceived probability of transitioning

out of the current policy regime into a perceived “Alternative regime”that they believe

will come next. Investors are aware that they may change their minds subsequently

about the likelihood of near-term monetary regime change, and take that into account

when forming expectations.

A Fed announcement in our model is bonafide news shock to which investors may

react by revising their nowcasts and forecasts of the current and future economic state,

their beliefs about the future conduct of monetary policy, and their perceptions of fi-

nancial market risk. To ensure that model expectations evolve in a manner that closely

aligns with observed expectations, we map the theoretical implications for these be-

liefs into data on numerous forward-looking variables, including professional forecaster

surveys and financial market indicators from spot and futures markets, estimating all

parameters and latent states.

Our main empirical results may be summarized as follows. First, the structural
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estimation implies that investors seldom learn only about conventional monetary policy

shocks from central bank announcements. Instead, jumps in financial market variables

are typically the result of a mix of factors, including announcement-driven revisions in

investor beliefs about the in the composition of primitive economic shocks hitting the

economy and/or about the probability of near-term monetary regime change.

For example, on January 3, 2001 the Fed surprised markets by reducing its target for

the federal funds rate by 50 basis points, causing the stock market to vault 4.2% in the

20 minutes following the announcement. Yet our estimates imply that the perception

of a surprisingly accommodative monetary policy shock played only a small role in

the stock market surge. Instead, the market jumped upward because, all else equal,

the announcement caused investors to lower their perception of what financial market

liquidity premia would be, and increase their perception of aggregate demand and the

corporate earnings share of output. On April 18, 2001, the market leapt 2.5% after the

Greenspan Fed again surprised with another 50 basis point reduction in the funds rate.

In this case, the big driver of the stock market was a jump upward in the perceived

probability that the conduct of monetary policy going forward would more aggressively

protect against the downside risks that affect stocks. The results for this event are new to

the literature and illustrate an important channel of monetary transmission to markets,

namely the role of Fed communications in altering investor beliefs about future Fed

policy to contain economic risks, thereby immediately impacting subjective risk premia.

Our second main finding is that fluctuating beliefs about the conduct of future mon-

etary policy generate significant market volatility throughout the sample and that most

of the variation in these beliefs occurs at times that are not close to a policy announce-

ment. An obvious explanation for this result is that most Fed announcements are not

immediately associated with a change in the policy stance, but instead provide “for-

ward guidance”in the form of a data-dependent sketch of what could trigger a change

in the conduct of policy down the road. These results underscore the challenges with

relying solely on high-frequency event studies for quantifying the channels of monetary

transmission to markets and the real economy.

Finally, our results indicate that investor beliefs about a future monetary policy

regime change are especially important for the stock market because of their role in

shaping perceptions of equity market risk. We find that the S&P 500 would have been

50% higher than it was in February of 2020 had investors counterfactually believed that

the Fed was very likely to shift in the next year to a policy rule that featured greater

activism to stabilize economic volatility, thereby lowering the quantity of risk in the

stock market.

The research in this paper connects with a large and growing body of evidence that

the values of long-term financial assets and expected return premia respond sharply to
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the announcements of central banks.1 A classic assumption of this literature is that

high-frequency financial market reactions to Fed announcements proxy for conventional

monetary policy “shocks,” i.e., innovations in a Taylor (1993)-type nominal interest

rate rule. By contrast, Jarocinski and Karadi (2020), Cieslak and Schrimpf (2019)

and Hillenbrand (2021) argue that some of the fluctuations are likely driven by the

revelation of information by the Fed, a “Fed information effect” channel emphasized

in earlier work by Romer and Romer (2000), Campbell, Evans, Fisher, and Justiniano

(2012), Melosi (2017), and Nakamura and Steinsson (2018). Related, Cieslak and Pang

(2021) identify monetary, growth, and risk premium shocks from Fed news using sign-

restricted VARs. Bauer and Swanson (2023) instead argue that markets are surprised

by the Fed’s response to recent economic events, while Bauer, Pflueger, and Sundaram

(2022) use survey data to estimate perceived policy rules, finding that they are subject

to substantial time-variation. The mixed-frequency structural approach proposed in

this paper extends these literatures by integrating a high-frequency event study into a

structural model and estimation. We also add to this literature by providing evidence

that expected return premia vary, in part, because the perceived quantity of stock market

risk fluctuates with beliefs about future monetary policy conduct.

Our work relates to a theoretical literature focused on the implications of mone-

tary policy for asset prices going back to Piazzesi (2005). Kekre and Lenel (2021) and

Pflueger and Rinaldi (2020) develop carefully calibrated theoretical models that imply

stock market return premia vary in response to a monetary policy shock. These theories

use different mechanisms but are all silent on the possible role of Fed announcement

information effects or of changing policy rules in driving market fluctuations, features

that are at the heart of our analysis.

The two-agent structural model of this paper builds on Bianchi, Lettau, and Lud-

vigson (2022) (BLL hereafter), who focus on the low frequency implications for asset

valuations of changes in the conduct of monetary policy. The mixed-frequency struc-

tural approach of this paper offers a significant methodological advancement over BLL

and (to the best of our knowledge) the extant literature, by developing a methodology

to exploit large datasets of relevant information at different frequencies, by integrating

an event study into a structural model, and by explicitly modeling revisions in investor

beliefs about future monetary policy in the minutes surrounding Fed announcements

as well as at lower frequencies. Moreover, unlike BLL and the extant literature, we

model regime changes in the conduct of monetary policy as nonrecurrent regimes, i.e.,

structural breaks, a more plausible specification given that new policy regimes are never

1See Cochrane and Piazzesi (2002), Piazzesi (2005), Bernanke and Kuttner (2005), Krishnamurthy
and Vissing-Jorgensen (2011), Hanson and Stein (2015), Gertler and Karadi (2015), Gilchrist, López-
Salido, and Zakrajšek (2015), Brooks, Katz, and Lustig (2018), Kekre and Lenel (2021), and Pflueger
and Rinaldi (2020).
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expected to be identically equal to old ones. We show how forward looking variables,

such as survey expectations and asset prices, can be used both to estimate the market’s

perceived probability of a near-term policy regime change, and to extract beliefs about

the nature of future policy regimes.

In contemporaneous work, Caballero and Simsek (2022) also study a two-agent, “two-

speed” economy with investors and households similar in spirit to our framework, in

which the Fed directly controls aggregate asset prices in an attempt to steer the house-

hold spending. This differs from our study in that it is a purely theoretical investigation

that studies asset pricing at an abstract level by thinking of the risky asset price as

a broad-based financial conditions index while allowing for two-way feedback between

financial conditions and the economy. Our work is an empirical compliment that stud-

ies the impact of the Fed on markets by integrating a high-frequency monetary event

study into a mixed-frequency asset pricing model and structural estimation, specifically

modeling the risky asset as the stock market. In future work, we plan to extend our

structural estimation to allow for simultaneous feedback between markets, the Fed, and

the economy.

Finally, our mixed-frequency structural approach connects with a pre-existing reduced-

form forecasting/nowcasting literature using mixed-frequency data in state space models

with the objective of augmenting lower frequency prediction models with more timely

high-frequency data (e.g., Giannone, Reichlin, and Small (2008), Ghysels and Wright

(2009), Schorfheide and Song (2015)). Our use of mixed-frequency data is designed for

a very different purpose, namely as way of integrating a high-frequency event study

into a structural model and estimation for the purpose of modeling and measuring news

shocks. We use high-frequency, forward-looking data available within the decision inter-

val to infer revisions in the intraperiod beliefs of investors about the economic state to be

realized at the end of the decision interval. This allows us to treat Fed announcements

as bonafide news shocks (as perceived by investors) rather than as ultra high frequency

macro shocks that happen to occur around Fed communications.

The rest of this paper is organized as follows. The next section presents preliminary

empirical evidence that we use to pin down the timing of monetary regime changes in

our sample. Section 3 describes the mixed-frequency structural macro-finance model

and equilibrium solution. Section 4 describes the structural estimation, while Section 5

presents our empirical findings from the structural estimation. Section 6 concludes. A

large amount of additional material on the model, estimation, and data has been placed

in an Online Appendix.
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2 Preliminary Evidence

In the structural model of the next section, investors form beliefs about future regime

change in the conduct of monetary policy. We therefore begin by presenting preliminary

evidence suggestive of infrequent, sizable shifts in the conduct of monetary policy over

our the course of our sample.

To that end, Figure 1, panel (a) plots the real federal funds rate, rt, measured for

the purposes of this plot in real terms as the nominal rate minus a four quarter moving

average of inflation, while panel (b) plots the difference between this rate and an estimate

of the neutral rate of interest, r∗t , from Laubach and Williams (2003), effectively a low-

frequency component of the real funds rate. We refer to th spread between rt and r∗t
as the monetary policy spread, and denote its time t value as mpst. The mpst may be

considered a crude measures of the stance of monetary policy, i.e., whether monetary

policy is accommodative or restrictive.

We allow for the possibility of infrequent regime changes in the means of rt and

mpst, governed by a discrete valued latent state variable, ξ
P
t that is presumed to follow

a NP -state nonrecurrent regime-switching Markov process, i.e., structural breaks. That

is, there is no expectation that regime shifts in the means of either variable must move

to a new regime that is identically equal to one in the past (mathematically a probability

zero event), though it could be quite similar. The specification here is more general and

more plausible than recurrent regime switching, since the estimation is free to choose

parameter values across regimes that are arbitrarily close to those that have occurred in

the past, without restricting them to be identically equal.2

Figure 1 reports the results for the case of two structural breaks (NP = 3) estimated

separately for rt and mpst, with the estimated regime subperiods reported in the figure

notes. We identify decades-long breaks in both variables, consistent with an earlier

literature documenting that monetary regime changes are infrequent (Clarida, Gali, and

Gertler (2000); Lubik and Schorfheide (2004); Sims and Zha (2006); Bianchi (2013)).

Importantly, regardless of whether we measure breaks in the mean of rt or mpst, the

break dates are identical and thus so are the regime subperiods. This shows that the r∗t
measure—while useful to get a sense of the persistence of swings in rt around that low

frequency component—has no influence on the estimated break dates.

The first estimated subperiod spans 1961:Q1 to 1978:Q3, a time period in which rt
was low andmpst was persistently negative. This “Great Inflation”regime coincides with

a run up in inflation and with two oil shocks in the 1970s that were arguably exacerbated

by a Fed that failed to react suffi ciently proactively. A second, “Great Moderation,”

regime begins in 1978:Q4, when a structural break drove upward jumps in both rt and

2Details of this procedure are provided in Appendix C of the Online Appendix.
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mpst. This period of more restrictive monetary policy lasted through 2001:Q3 and covers

the Volcker disinflation and moderation in economic volatility that followed. The third,

“Post Millennial,” regime spans 2001:Q4 to 2020:Q1 and represents a new prolonged

period of low real interest rates. The beginning of this regime follows shortly after the

inception of public narratives on the “Greenspan Put,”the perceived attempt of Chair

Greenspan to prop up securities markets in the wake of the IT bust, a recession, and

the aftermath of 9/11, by lowering interest rates. This low rate subperiod continues

with the explicit forward guidance “low-for-long” policies under Chair Bernanke that

repeatedly promised over several years to keep interest rates at ultra low levels for an

extended period of time. Below we refer to the Great Inflation, the Great Moderation

and the Post Millennial regimes in abbreviated terms as the GI, GM, and PM regimes.

Figure 1: Breaks in Monetary Policy

Policy regime sequence based on the real interest rates
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Notes: Monetary policy spread mpst ≡ FFRt − Expected Inflationt − r∗t . r∗ is from Laubach and

Williams (2003). The blue (dashed) line represents the data. The red (solid) line is the estimated

regime mean of each series. Great Inflation Regime: 1961:Q1-1978:Q3. Great Moderation Regime:

1978:Q4-2001:Q3. Post-Millennial Regime: 2001:Q4-2020:Q1. The sample spans 1961:Q1-2020:Q1.

In the next section we formally assess the extent to which estimated monetary policy

rules actually shifted across these identified regime subperiods associated with large,

low frequency movements in the real federal funds rate. To accomplish this, we set the

break dates for regime changes in the policy rule to coincide with the regime sequence

for ξPt displayed in Figure 1. We use Bayesian model comparison of different estimated

structural models to decide on the appropriate number NP of policy regimes, and find

NP = 3 works well. With this, our structural estimation spans three different pol-
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icy regimes across the Great Inflation, the Great Moderation, and the Post Millennial

subperiods shown in Figure 1.

The purpose of estimating break dates in this way is that it allows us to build a

structural model to fit these empirical observations, rather than establishing evidence

about the sequence of monetary regimes that would be contingent on the many details of

the structural model. It should be emphasized, however, that the preliminary evidence

of this section is used only to set the timing of policy regime changes in the structural

model. In particular, all regime-dependent parameters of the policy rule are freely

estimated under symmetric priors, so are treated as equally likely to increase or decrease

across the regime subperiods for ξPt , if they change at all.

3 Mixed-Frequency Macro-Finance Model

This section presents a two-agent dynamic asset pricing model of monetary policy trans-

mission. Risky asset prices are determined by the behavior of a forward-looking repre-

sentative investor who reacts swiftly to news and forms beliefs about future monetary

policy. Households/workers supply labor, invest only in the bond, and form expectations

using adaptive learning rules that predominate in aggregate inflation and output growth

expectations. As in BLL, it is through such heterogeneity in beliefs that regime changes

in the conduct of monetary policy have large and prolonged effects on real interest rates,

despite the forward-looking, non-inertial nature of market participant expectations. We

work with a risk-adjusted loglinear approximation to the model that can be solved an-

alytically, in which all random variables are conditionally lognormally distributed.

Let the “decision” interval t of both agents be monthly and let lowercase variables

denote log variables, e.g., ln (Dt) = dt. For investors, this means that they receive

payout and can only observe the economic state St at the end of each month. However,

as explained below, they nevertheless price assets continuously and update expectations

in the wake of Fed announcements.

Asset Pricing Block Assets are priced by a representative investor who con-

sumes per-capita aggregate shareholder payout, Dt, and earns all income from trade

in two assets: a one-period nominal risk-free bond and a stock market. The investor’s

intertemporal marginal rate of substitution in consumption is the stochastic discount

factor (SDF) and its logarithm takes the form:

mt+1 = ln
(
βp
)

+ ϑpt − σp (∆dt+1) . (1)

where σp is a relative risk aversion coeffi cient and ln
[
βp exp (ϑpt)

]
is a subjective time

discount factor that varies over time with the patience shifter ϑpt. Individual investors
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take ϑpt as given, driven by the market as a whole.3 A time-varying specification for the

subjective time-discount factor is essential for ensuring that, in equilibrium, investors

are willing to hold the nominal bond at the interest rate set by the central bank’s policy

rule, specified below.

Aggregate payout is a time-varying shareKt of real output Yt, implying Dt = KtYt or

in logs dt−ln(Yt) = kt. Since in the model all earnings are paid out to shareholders, we

refer to Kt simply as the earnings share hereafter. Variation in kt, follows an exogenous

primitive process:

kt − k = (1− ρk)λk,∆y∆yt + ρk
(
kt−1 − k

)
+ σkεk,t.

Thus kt varies with economic growth and an independent i.i.d. shock εkt ∼ N (0, 1).

The first-order-condition for optimal holdings of the one-period nominal risk-free

bond with a face value equal to one nominal unit is

LP−1
t Qt = Ebt

[
Mt+1Π−1

t+1

]
, (2)

where Qt is the nominal bond price, Ebt denotes the subjective expectations of the in-
vestor, and Πt+1 = Pt+1/Pt is the gross rate of general price inflation. Investors’subjec-

tive beliefs, indicated with a “b”superscript, play a central role in asset pricing and are

discussed in detail below. Investors have a time-varying preference for nominal risk-free

assets over equity, accounted for by LPt > 1, implying that Qt is higher than it would

be absent these benefits, i.e., when LPt = 1.

Taking logs of (2) and using the properties of conditional lognormality delivers the

real interest rate as perceived by the investor:

it − Ebt [πt+1] = −Ebt [mt+1]− .5Vbt [mt+1 − πt+1]− lpt (3)

where it = −ln (Qt), πt+1 ≡ ln (Πt+1) is net inflation, Vbt [·] is the conditional variance
under the subjective beliefs of the investor, and lpt ≡ ln (LPt) > 0. Variation in lpt
follows an AR(1) process

lpt − lp = ρlp
(
lpt−1 − lp

)
+ σlpεlp,t

subject to an i.i.d. shock εlp,t ∼ N (0, 1).

3This specification for ϑpt is a generalization of those considered in previous work (e.g., Campbell and
Cochrane (1999) and Lettau and Wachter (2007)) where the preference shifter is taken as an exogenous
process that is the same for each shareholder. Combining (1) and (3) below, we see that ϑp,t is implicitly
defined as

ϑpt = −
[
it − Ebt [πt+1]

]
+ Ebt [σp∆dt+1]− .5Vbt [−σp∆dp,t+1 − πt+1]− lpt − ln

(
βp
)
.

9



Let PD
t denote total value of market equity, i.e., price per share times shares out-

standing. Optimal shareholder consumption obeys the following log Euler equation:

pdt = κpd,0 + Ebt [mt+1 + ∆dt+1 + κpd,1pdt+1] +

+.5Vbt [mt+1 + ∆dt+1 + κpd,1pdt+1] ,

where pdt ≡ln
(
PD
t /Dt

)
. The log equity return rDt+1 ≡ ln

(
PD
t+1 +Dt+1

)
− ln

(
PD
t

)
obeys

the following approximate identity (Campbell and Shiller (1989)):

rDt+1 = κpd,0 + κpd,1pdt+1 − pdt + ∆dt+1,

where κpd,1 = exp(pd)/(1+exp(pd)), and κpd,0 = log
(
exp(pd) + 1

)
−κpd,1pd. Combining

the above, the log equity premium as perceived by the investor is:

Ebt
[
rDt+1

]
−
(
it − Ebt [πt+1]

)︸ ︷︷ ︸
subj. equity premium

=

[
−.5Vbt

[
rDt+1

]
− COVbt

[
mt+1, r

D
t+1

]
+.5Vbt [πt+1]− COVbt [mt+1, πt+1]

]
︸ ︷︷ ︸

subjective risk premium

+ lpt︸︷︷︸,
liquidity Premium

(4)

where COVbt [·] is the investor’s subjective conditional covariance.
The equity premium has two components, a subjective risk premium is attributable to

the agent’s subjective perception of risk, and a “liquidity premium” lpt that represents

a time-varying preference for risk-free nominal debt over equity. The subjective risk

premium varies endogenously in the model with fluctuations in investor beliefs about

the conduct of future monetary policy, as explained below. The liquidity premium

captures all sources of time-variation in the equity premium other than those attributable

to subjective beliefs about the monetary policy rule. These could include variation

in the liquidity and safety attributes of nominal risk-free assets (e.g., Krishnamurthy

and Vissing-Jorgensen (2012)), variation in risk aversion, flights to quality, or jumps in

sentiment.

Macro Dynamics Macroeconomic dynamics are described by a set of equations

similar to prototypical New Keynesian models, but with two distinctive features: adap-

tive learning, and regime changes in the conduct of monetary policy. Strictly speaking,

we consider equations (5) through (7) below as equilibrium dynamics and not a micro-

founded structural model. We consider an equilibrium in which bonds are in zero-net-

supply in both the macro and asset pricing blocks and thus there is no trade between

the investor and households.4

4Models with trade are computationally slow to solve and would present a significant challenge to
estimation; hence we leave this to future research. However, an empirically plausible version of our model
with trade may not imply appreciably different aggregate dynamics. For example, Chang, Chen, and
Schorfheide (2021) provide econometric evidence that spillovers between aggregate and distributional
dynamics in heterogeneous agent models are generally small.
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Let ln (At/At−1) ≡ gt represent the stochastic trend growth of the economy, which

follows an AR(1) process gt = g + ρg (gt−1 − g) + σgεg,t, εg,t ∼ N (0, 1). Log of de-

trended output in the model is defined as ln (Yt/At). Let variables with tildes, e.g.,

ỹt = ln (Yt/At), denote detrended variables. Thus ỹt > 0 (< 0) when yt is above (below)

potential output, so ỹt 6= 0 can be interpreted as a New Keynesian output gap. In keep-

ing with New Keynesian models, we write most equations in the macro block in terms

of detrended real variables.

Macroeconomic dynamics satisfy a loglinear Euler or “IS”equation that is a function

of household consumption (1−Kt)Yt:5

ỹt = Emt (ỹt+1)− σ [it − Emt (πt+1)− r] + ft (5)

where Emt (·) is the expectation under the subjective beliefs of the macro agent, r is the
steady state real interest rate, and ft is a demand shock that also absorbs any variation in

the macro agent’s consumption attributable to movements in the labor share, ln (1−Kt).

The demand shock follows an AR(1) process ft = ρfft−1 + σfεf , εf ∼ N (0, 1). The

coeffi cient σ in (5) is a positive parameter.

Inflation dynamics are described by the following equation, which takes the form of

a New Keynesian Phillips curve:

πt − πt = β (1− λπ,1 − λπ,2)Emt [πt+1 − πt] + βλπ,1 [πt−1 − πt] (6)

+βλπ,2 [πt−2 − πt] + κ0ỹt + κ1ỹt−1 + σµεµ,t

where πt denotes the household’s perceived trend inflation rate (specified below) and

εµ,t ∼ N (0, 1) is a markup shock.6 Lags beyond the current values of variables are used

to capture persistent inflation dynamics. The coeffi cients β, λπ1 , λπ2 , κ0, and κ1 are

positive parameters.

The central bank obeys the following nominal interest rate rule subject to nonrecur-

rent regime changes in its parameters:

it −
(
r + πTξpt

)
=

(
1− ρi,ξpt − ρi2,ξpt

) [
ψπ,ξpt π̂t,t−3 + ψ∆y,ξpt

(
4∆̂yt,t−3

)]
(7)

+ρi1,ξpt

[
it−1 −

(
r + πTξpt

)]
+ ρi2,ξpt

[
it−2 −

(
r + πTξpt

)]
+ σiεi.

The central bank is presumed to react to quarterly data (at monthly frequency) given

that it is unlikely to react to the more volatile monthly variation in growth and inflation.

5We assume that the Euler equation (5) holds under nonrational expectations. Honkapohja, Mitra,
and Evans (2013) provide microfoundations for such Euler equations with nonrational beliefs.

6This equation can be micro-founded by assuming that managers of firms are workers who form
expectations as households/workers do rather than as shareholders do, consistent with evidence that the
discount rates managers use when making investment and employment decisions are different from those
observed in financial markets (Gormsen and Huber (2022)), and with evidence that those expectationsn
do not appear rational ()Gennaioli, Ma, and Shleifer (2016).
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Thus π̂t,t−3 ≡
∑2

l=0

(
πt−l − πTξpt

)
is quarterly inflation in deviations from the implicit

time t target πT
ξpt
, 4∆yt,t−3 ≡ 4

∑2
l=0 (∆yt − g) is annualized quarterly output growth in

deviations from steady-state growth g, and εi,t ∼ N (0, 1) is an i.i.d. monetary policy

shock. Lags of the left-hand-side variable appear in the rule to capture the observed

smoothness in adjustments to the central bank’s target interest rate.

The interest rate policy rule allows for nonrecurrent regime changes in the conduct

of monetary policy driven by ξpt , which indexes changes in the parameters of (7). The

parameter πT
ξPt
plays the role of an implicit time-t inflation target. In particular, this

time-varying parameter may deviate from the central bank’s stated long-term inflation

objective when it is actively trying to move inflation back toward that objective. The

activism coeffi cients ψπ,ξPt , and ψ∆y,ξPt
govern how strongly the central bank responds

to deviation from the implicit target and to economic growth and are also subject to

regime shifts, as are the autocorrelation coeffi cients ρi,ξPt and ρi2,ξpt . We treat shifts in

the policy rule parameters as exogenous and latent parameters to be estimated.7 These

coeffi cients vary with ξPt and the identified regime sequence for rξPt from Figure 1. It

is important to emphasize, however, that we freely estimate the policy rule parameters

under symmetric priors, so they could in principle show no shift across regimes.

We assume that households form expectations about inflation using an adaptive

algorithm on the autoregressive process, πt = α+φπt−1 +ηt, where the agent must learn

about α. Each period, agents update a belief αmt about α. Define perceived trend inflation

to be the limh→∞ Emt [πt+h] and denote it by πt. Given the presumed autoregressive

process, it can be shown that πt = (1− φ)−1 αmt and that Emt [πt+1] = (1− φ) πt + φπt.

We allow the evolution of beliefs about αmt and πt to potentially reflect both adaptive

learning as well as a signal about the central bank’s inflation target that could reflect

the opinion of experts (as in Malmendier and Nagel (2016)) or a credible central bank

announcement. For the adaptive learning component, we follow evidence in Malmendier

and Nagel (2016) that the University of Michigan Survey of Consumers (SOC) mean

inflation forecast is well described by a constant gain learning algorithm. Combining

these yields updating rules for αmt and πt :

αmt =
(
1− γT

) [
αmt−1 + γ

(
πt − φπt−1 − αmt−1

)]
+ γT

[
(1− φ) πTξt

]
(8)

πt =
(
1− γT

) [
πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)

]
+ γTπTξt , (9)

where γ is the constant gain parameter that governs how much last period’s beliefs αmt−1

and πt−1 are updated given new information, πt. The second term in square brackets

7This approach side-steps the need to take a stand on why the Fed changes its policy rule, an
important consideration given that the reasons for such changes would be diffi cult if not impossible
to credibly identify as a function of past historical data, due to the degree of discretion the Fed has
in interpreting its dual mandate and the likelihood that distinct regimes are the result of a gradual
learning process interacting with the bespoke perspectives of different central bank leaders across time.
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captures the effect of the signal about the implicit inflation target πTξt. The parameter

γT controls the informativeness of the inflation target signal. If γT = 1, the signal is

perfectly informative and the household’s belief about trend inflation is the same as the

implicit target. If γT = 0, the signal is completely uninformative and the agent’s belief

about trend inflation depends only on the adaptive learning algorithm. A weight of

γT < 1 could arise either because the target is imperfectly observed, or because central

bank announcements about the target are not viewed as fully informative or credible.

Small values for γT are indicative of slow learning and low central bank credibility,

since in that case the macro agent continues to base inflation expectations mostly on a

backward looking rule even when there has been a shift in the inflation target.

Finally, expectations about detrended output follow a simple backward looking rule:

Emt (ỹt+1) = %1ỹt−1 + %2ỹt−2 + %3ỹt−3. (10)

Investors take the above dynamics into account when forming expectations but they

must form beliefs about the future conduct of monetary policy.

Investor Beliefs About Future Monetary Policy To model the uncertainty

investors face about monetary policy, we begin by assuming that they correctly under-

stand the monetary policy rule is subject to infrequent, nonrecurrent regime changes.

We further assume that investors can accurately estimate the policy rule currently in

place, an approximation we argue is reasonable in the context of infrequent regime

changes, for two reasons. First and most important, plausible uncertainty that is solely

about the current rule—holding fixed beliefs about future monetary policy—is unlikely to

be important for long duration assets such as the stock market. This is because what

matters for these assets is not precisely where the policy rule is today, but where it

will be for the foreseeable future. In our specification, investors continuously update

their beliefs about the probability of moving to a new policy regime as soon as the be-

ginning of the next month, so any reasonable additional uncertainty about where the

rule is currently is relatively unimportant. We demonstrate this below by showing that

allowing for reasonable uncertainty about the parameters of the current regime, or for

the possibility that investors revise their understanding of the current rule after a Fed

announcement, has negligible effects on our results, consistent with the observation that

the stock market is a heavily forward-looking asset. This contrasts with the large effects

found for changing beliefs about when and where policy will settle for the foreseeable

future. Second, these assumptions are consistent with evidence that investors closely

monitor Fed communications combined with the observed practice of the Fed to clearly

telegraph any intentional change in the stance of policy, but to be comparatively vague

about how long that change will last and what will come afterwards. These observa-

tions suggest that investors closely scrutinize Fed communications, not because they are
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concerned with what the central bank is doing today, but because they understand they

are contemplating a future with a central bank that could operate differently from the

one today, or any that has come before.

To model these circumstances, we assume that, for each time t policy rule regime

indexed by ξPt , investors hold in their minds a perceived “Alternative policy rule”indexed

by ξAt that they believe will come next, whenever the current policy regime ends:

it −
(
r + πT

ξAt

)
=

(
1− ρi,ξAt − ρi2,ξAt

) [
ψπ,ξAt π̂t,t−3 + ψ∆y,ξAt

(
4∆̂yt,t−3

)]
(11)

+ρi1,ξAt

[
it−1 −

(
r + πTξpt

)]
+ ρi2,ξAt

[
it−2 −

(
r + πTξpt

)]
+ σiεi,

Investors do not have perfect foresight. When the current policy regime ends, the new

policy regime that replaces it will never be exactly as previously imagined by the investor.

When a regime ends, investors update their understanding of the new current policy rule

and proceed to contemplate a new perceived Alternative for the next rule.

Investors in the model form beliefs not only about what the next policy rule ξAt will

look like, they also continuously assess the likelihood of switching to ξAt by the beginning

of next period. Specifically, for each ξPt , investors have beliefs about the probability of

remaining in ξPt versus changing to ξ
A
t next month, but do not consider anything after

that. This latter aspect of the specification is a form of bounded rationality that is

arguably plausible in the context of infrequent regime changes. In the nonrecurrent

regime setup of the model, this implies that the pondered Alternative is treated as an

absorbing state as of time t, since the probability of returning to any previous rule must

be zero by definition.

We formalize these ideas with a belief regime sequence governed by a discrete-valued

variable ξbt ∈ {1, 2, ...B,B + 1} with B + 1 states. The regimes ξbt = 1, 2, ...B represent

a grid of beliefs taking the form of perceived probabilities that the current policy rule

will still be in place next period. The regime ξbt = B+ 1 is a belief regime capturing the

perceived probability of staying in the Alternative regime once it is reached. We order

these so that belief regime ξbt = 1 is the lowest perceived probability that the current

policy rule will remain in place and ξbt = B is the highest.

The perceived regimes are modeled with a transition matrix taking the form:

Hb =


pb1ps pb2p∆1|2 · · · pbBp∆1|B 0
pb1p∆2|1 pb2ps pbBp∆2|B 0
...

...
. . .

...
...

pb1p∆B|1 pbBps 0
1− pb1 1− pb2 · · · 1− pbB pB+1,B+1 = 1

 , (12)

where Hb
ij ≡ p

(
ξbt = i|ξbt−1 = j

)
and

∑
i 6=j p∆i|j = 1 − ps. In the above, pb1 is the

subjective probability of remaining in the current policy rule under belief 1. For example,
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pb1 = 0.05 implies that investors believe there is a 5% chance that the current policy

rule will still be in place next period. The non-zero off diagonal elements in the upper

left B × B submatrix allow for the possibility that investors might receive subsequent

information that could change their beliefs, and take that into account when forming

expectations. The parameter, ps is the probability investors assign to not changing

their minds, i.e., to having the same beliefs tomorrow as today. The parameter p∆i|j is

the probability that agents assign to changing to belief i tomorrow as a result of new

information, conditional on having belief j today. Thus pbjps measures the subjective

probability of being in belief j tomorrow, conditional on having belief j today, while

pbjp∆i|j is the subjective probability of being in belief i tomorrow conditional on having

belief j today. Finally, 1−pbi is the probability of having belief i today but exiting to the
Alternative regime tomorrow. The parameter pB+1,B+1 is the perceived probability of

remaining in the Alternative regime conditional on having moved there. With perceived

nonrecurrent regimes and our bounded rationality assumption, this probability is unity

by definition. The model of beliefs therefore takes the form of a reducible Markov chain,

implying that investors believe with probability 1 that they will eventually transition

out of the current policy rule to the perceived Alternative rule.

Define the overall policy regime ξP,At =
{
ξPt , ξ

A
t

}
as characterized by the time t

policy regime ξPt and its associated time t perceived Alternative policy rule ξ
A
t . Thus

with Np = 3 true policy regimes over the course of the sample, there are also 3 perceived

Alternative regimes over the same time span.

Equilibrium An equilibrium is defined as a set of prices (bond prices, stock prices),

macro quantities (inflation, output growth, inflation expectations), laws of motion, and

investor beliefs such that the equations in the asset pricing block are satisfied, the

equations in the macro block are satisfied, with investor beliefs about monetary policy

characterized by the perceived Alternative policy rule (11) and the perceived belief

regime sequence described above with transition matrix (12).

Model Solution To solve the model we use the algorithm of Farmer, Waggoner,

and Zha (2011) applied to solve the system of model equations that must hold in equilib-

rium. Appendix J of the Online Appendix explains the approximation used to preserve

lognormality of the entire system, following Bansal and Zhou (2002) and Bianchi, Kung,

and Tirskikh (2018). The solution of the model takes the form of a Markov-switching

vector autoregression (MS-VAR) in the state vector

St =
[
SMt ,mt, pdt, kt, lpt,Ebt (mt+1) ,Ebt (pdt+1)

]
,
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where SMt ≡ [ỹt, gt, πt, it, πt, ft]
′, with

St = C
(
θξP,At

, ξbt ,H
b
)

︸ ︷︷ ︸
level

+ T (θξP,At
, ξbt ,H

b)︸ ︷︷ ︸
propagation

St−1 +R(θξP,At
, ξbt ,H

b)︸ ︷︷ ︸
amplification

Qεt, (13)

where C (·) , T (·) , and R (·) are matrices whose elements depend on primitive parame-
ters, εt = (εf,t, εi,t, εg,t, εµ,t, εk,t, εlp,t) is the vector of primitive Gaussian shocks, and θξP,At
is a vector of parameters that include the time-varying parameters of the current policy

regime ξPt , and the time-varying parameters of each associated Alternative regime ξ
A
t .

To solve the model we use the assumption that investors condition on the economic

state St once it is observed at the end of each month. With this assumption, investor

expectations in the presence of nonrecurrent regime switching and the perceived Alter-

native rule maybe be computed for any variable, as explained in Appendix G of the

Online Appendix.

Equation (13) shows that the realized policy regime ξPt (along with the associated

Alternative regime ξAt ) and investor beliefs ξ
b
t about the probability of a shift in the

policy rule amplify and propagate shocks in three distinct ways. First, there are “level”

effects, captured by the coeffi cients C
(
θξP,At

, ξbt ,H
b
)
, that affect the economy absent

shocks. These are driven by changes in the central bank’s objectives such as the inflation

target, as well as by the perceived risk of the stock market given by the risk-premium

terms in (4). Second, there are “propagation”effects governed by the matrix coeffi cient

T (θξP,At
, ξbt ,H

b) that determine how today’s economic state is related to tomorrow’s.

Third, there are “amplification”effects governed by the matrix coeffi cientR(θξP,At
, ξbt ,H

b)

that generate endogenous heteroskedasticity of the primitive Gaussian shocks.

This heteroskedasticity implies that perceived quantity of risk in the stock market

varies endogenously with the expected future conduct of monetary policy. Indeed, it

is only through R(θξP,At
, ξbt ,H

b) that the subjective risk premium in (4) varies. In turn,

R(θξP,At
, ξbt ,H

b) varies only with (i) realized regime changes ξPt in the conduct of monetary

policy—each of which are associated with a distinct perceived Alternative regime ξAt —and

(ii) time-varying beliefs ξbt about the probability of switching to ξ
A
t by next period. This

shows that the perceived quantity of risk varies only with changes in the current rule and

beliefs about the future rule. It is especially sensitive to the activism coeffi cient in the

perceived Alternative rule, ψ∆y,ξAt
governing investor beliefs about how strongly future

monetary policy will react to fluctuations in economic growth. The greater ψ∆y,ξAt
is

relative to ψ∆y,ξPt
, the more agents perceive that future central bank policy will do more

to proactively limit economic volatility and thus the systematic risks that affect stocks.

Investor Information and Updating Let It denote the time t information set of
investors, which includes the current policy regime ξPt , their perceived Alternative regime
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ξAt , their beliefs about monetary policy ξ
b
t , and additional data available at mixed fre-

quencies that we don’t explicitly specify. Investors can observe the economic state St
only at the end of each month, but the price assets continuously and their beliefs may ex-

hibit jumps in response to Fed communications. With St observed only at the end of the

month, any Fed news that the investor attends to within a month results in the updating

of a nowcast of St, which we assume they produce by filtering a potentially extensive

database of timely, high-frequency information in It. This database is unobserved by
the econometrician, but our estimation won’t rely on it as explained below.

Investors use It in two ways. First, given a baseline monthly decision interval, they
update their previous nowcasts and subjective expectations once St is observed at the

end of every t. Second, investors allocate attention to updating nowcasts of St and beliefs

ξbt about future monetary policy at specific times within a month when the central bank

releases information. This higher-frequency attentiveness to Fed news echoes real-world

“Fed watching” and is the mechanism through which the model accommodates swift

market reactions to surprise central bank announcements, driving jumps in investor

perceptions of stock market risk COVbt
[
mt+1, r

D
t+1

]
.

4 Structural Estimation

Define ξt ≡
(
ξPt , ξ

A
t , ξ

b
t

)
to be the collection of belief and policy regime indicators. The

system of estimable equations may be written in state-space form by combining the state

equations (13) with an observation equation taking the form

Xt = Dξt,t + Zξt,t [S ′t, ỹt−1]
′
+ Utvt (14)

vt ∼ N (0, I) ,

where Xt denotes a vector of data, vt is a vector of observation errors, Ut is a diagonal

matrix with the standard deviations of the observation errors on the main diagonal, and

Dξt,t, and Zξt,t are parameters mapping the model counterparts of Xt into the latent

discrete- and continuous-valued state variables ξt and St, respectively, in the model.

The matrices Zξt,t, Ut, and the vector Dξt,t depend on t independently of ξt because

some of our observable series are not available at all frequencies and/or over the full

sample. As a result, the state-space estimation uses different measurement equations to

include series when they are available, and exclude them when they are missing.

We estimate the state-space representation with Bayesian methods using a modi-

fied version of Kim’s (Kim (1994)) basic filter and approximation to the likelihood for

Markov-switching state space models, and a random-walk metropolis Hastings MCMC

algorithm to characterize uncertainty. The parameters of the monetary policy rule are
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estimated under symmetric priors, while the priors on the other parameters are stan-

dard and specified to be loosely informative except where there are strong restrictions

dictated by theory, e.g., risk aversion must be non-negative. A complete description of

the priors is provided in Appendix A of the Online Appendix.

Mixed-Frequency Filtering Algorithm The filtering algorithm described in

this section is used to infer real-time jumps in investor beliefs in response to news events

and refers to the state space equations (13) and (14). We provide a short description of

the algorithm in this section, with full detail provided in Appendix I of the Online Ap-

pendix. To further facilitate interpretation, in Appendix H we explain the procedure for

a simple state space representation with a single state variable and no regime switching.

The algorithm uses mixed-frequency data but differs from common reduced-form

settings in which high-frequency data are used primarily to augment prediction mod-

els with more timely information, an objective typically accomplished by specifying the

state/transition equations at the highest frequency of data used. In this case, the ob-

jects to be filtered are high-frequency estimates of the state space and, correspondingly,

high-frequency structural shocks. Our mixed-frequency algorithm is designed for a very

different purpose, namely as way of integrating a high-frequency event study into a

structural estimation for the purpose of measuring market reactions to news shocks.

In our setting, the state/transition equation is part of the structural model and needs

to correspond to the monthly frequency over which investors observe St and consume

payout. However, agents price assets continuously and thus update their beliefs about

the economic state in tight windows around FOMC news. Note that it would be not

be appropriate to interpret high-frequency revisions in expectations as attributable—in

general—to actual macroeconomic shocks occurring over a 30 minute window containing

a Fed communication. A Fed announcement can be considered a set of signals about

different variables with varying degrees of precision. An FOMC statement announcing a

change in the target federal funds rate, which the Fed directly controls, is a signal with

infinite precision that removes all uncertainty about what the end-of-month funds rate

will be. In this special case, the belief update coincides with a true change in the interest

rate. For all other variables in St, this will not be true. An announcement about the

macroeconomic outlook is a signal with considerable noise, but in any case there’s little

reason to think that true macro shocks systematically happen over the narrow window

that the fed happens to be speaking. What can plausibly change over the course of an

announcement are the beliefs of investors about the current and future economic state.

To model these ideas, the filter is designed to measure within-month belief updates

(i.e., nowcasts) reflecting investors’changing perceptions of the current (end-of-month)

economic state attributable to Fed news. This is accomplished by mapping jumps in
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high-frequency, forward-looking data from markets and surveys into the model’s impli-

cations for expectations, a procedure that allows the econometrician to infer investor

belief updates around Fed news without having to take a stand on the unobservable

nowcasting models and information sets of investors. Because the model implies the

economic state is fully revealed at the end of each month, within-month nowcasts of St
are then supplanted by their observed values the end of each t.

The algorithm may be summarized as follows. Suppose the econometrician has infor-

mation up through the end of month t− 1 and new high-frequency information arrives

at t − 1 + δh. Here δh ∈ (0, 1) represents the number of time units that have passed

during month t up to t − 1 + δh. For example, δh could correspond to the number

of time units that have passed when we are at 10 minutes before or 20 minutes after

an FOMC announcement. Let Xδh denote the subset of X available at high frequency

around Fed news, and let X t−1 = (Xt−1, Xt−2, ...) denote all observations in the sample

up through t − 1. We use the suffi x (t\t− 1 + δh) to denote filtered objects related to

investor nowcasts of the state at time t, conditional on their information at t−1+δh. We

use “|”to refer to conditioning that is with respect to the econometrician’s information
set. Thus, S(t\t−1+δh)|t−1 refers to the econometrician’s time t− 1 filtered estimate of the

investor’s nowcast of St conditional on whatever information investors had at t− 1 + δh.

The algorithm involves iterating on the following steps:

(i) Kalman Filter: Conditional on ξbt−1 = j and ξbt = i run the Kalman filter for

i, j = 1, 2, ..., B to produce S(i,j)
(t\t−1+δh)|t−1 and its mean squared error P

(i,j)
(t\t−1+δh)|t−1.

At t − 1 + δh, compute updated conditional forecast errors e
(i,j)
(t\t−1+δh)|t−1+δh,t−1 =

Xδh
t−1+δh

−Di−Zi
[
S

(i,j)′

(t\t−1+δh)|t−1, ỹt−1

]′
using the series Xδh available at t−1 + δh.

Fixing S(i,j)
(t\t−1+δh)|t−1 and P

(i,j)
(t\t−1+δh)|t−1 from t−1, use e(i,j)

(t\t−1+δh)|t−1+δh,t−1 to re-run

the filter and update S(i,j)
(t\t−1+δh)|t−1+δh

and P (i,j)
(t\t−1+δh)|t−1+δh

.

(ii) Hamilton Filter: With e(i,j)
(t\t−1+δh)|t−1+δh,t−1 in hand, re-run the Hamilton filter to

estimate new regime probabilities Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
, Pr

(
ξbt |Xt−1+δh , X

t−1
)

for i, j = 1, 2, ..., B.

(iii) Approximations: Collapse theB×B values of S(i,j)
(t\t−1+δh)|t−1+δh

and P (i,j)
(t\t−1+δh)|t−1+δh

into B values S(j)
(t\t−1+δh)|t−1+δh

and P (j)
(t\t−1+δh)|t−1+δh

using Kim’s (Kim (1994)) ap-

proximation.

(iv) Store or Iterate: If t − 1 + δh = t iterate forward by setting t − 1 = t and

return to step (i). Otherwise store the updates S(j)
(t\t−1+δh)|t−1+δh

, P (j)
(t\t−1+δh)|t−1+δh

,

Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
, and Pr

(
ξbt |Xt−1+δh , X

t−1
)
and return to step (i) at the

next intramonth time unit δk > δh, keeping t− 1 fixed.
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Two points about this algorithm bear noting. First, the filter is rerun at least twice,

once immediately before and once after an FOMC announcement. In general, the filter

can be rerun as frequently as desired within a month, even as transition dynamics are

still specified across months. It is therefore straightforward to handle news events that

are spaced non-uniformly over the sampling interval, as when the number of FOMC

meetings during a month varies over the sample.

Second, the entire perceived state vector St can be reestimated at high-frequency

within a month, provided that a subset of data are available in tight windows around

announcements. Thus we can infer revisions to e.g., investor nowcasts of aggregate

demand or of the earnings share from the information encoded in more timely financial

market observations, even if data on output, earnings, inflation, etc., are only available

once per month.

Data and Measurement Our full dataset spans January 1961 through February

2020. The sample of Fed news consists of 220 Federal Open Market Committee (FOMC)

press releases covering February 4th, 1994 to January 29th, 2020. Observations on most

series are available monthly. For quarterly GDP growth we interpolate to monthly

frequency using the method in Stock and Watson (2010). An explicit description of the

mapping between our observables and model counterparts and complete description of

each data series and sources is given in Appendix I of the Online Appendix.

We use high-frequency pre- and post-FOMC observations on the following variables:

daily survey expectations of inflation and GDP growth from Bloomberg (BBG), daily

observations on the 20-year Baa credit spread with the 20-year Treasury bond rate (Baa

spread hereafter), minutely observations on four distinct federal funds futures (FFF)

contract rates with different expiries, and minutely observations on the S&P 500 market

value. These high-frequency data serve two purposes. First, they allow us to measure

the affect of Fed news on investor beliefs and perceptions in tight windows around an-

nouncements. Second, the timely information contained in these forward-looking series

allow us to account for economic news that pre-dated the FOMC announcement but

arrived after the latest observations on stale monthly survey data (Bauer and Swanson

(2023)). By conditioning on close-range, pre- and post-announcement observations for

inflation and GDP growth expectations and credit spreads (the day before and day af-

ter), interest rate futures, and the stock market (10 minutes before and 20 minutes after),

post-announcement jumps recorded from our estimation cannot be readily attributed to

stale economic news that came out earlier in the announcement month.

At lower frequencies, we use the household-level Survey of Consumers (SOC) from

the University of Michigan to discipline household expectations and three additional

professional forecaster surveys from Bluechip (BC), Survey of Professional Forecasters
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(SPF) and Livingston (LIV) to discipline investor expectations. We measure investor

expectations at multiple horizons using the four different professional surveys and treat

each of these as a noisy signal on the true underlying investor expectations process.

A number of series are used because they have obvious model counterparts. Data

for Gross Domestic Product (GDP) growth and inflation are mapped into the model

implications for output growth and inflation; data on the current effective federal funds

rate (FFR) are mapped into the model’s implications for the current nominal interest

rate; data on the FFF market and the BC survey measure of the expected FFR 12

months-ahead are mapped into the model’s implications for investor expectations of the

FFR.8 The inclusion of data on long-dated FFF contracts and survey forecasts of the

funds rate a year or more out are especially helpful for identifying the parameters of the

Alternative policy rule, since investors’ longer-term forecasts are dominated by where

they believe future policy will be and not by the rule currently in place.

We discipline the earnings share of output Kt with observations on the ratio of S&P

500 earnings to GDP. We account for the fact that earnings in the data differs from the

payout shareholders actually receive by mapping the theoretical concept for kt into its

respective data series allowing for observation error in the relevant observation equation.

Finally, data on the Baa spread are mapped into the model’s implications for the

liquidity premium, lpt, a catchall for many factors outside of the model that could effect

the subjective equity premium, including changes in the perceived liquidity and safety

attributes of Treasuries, default risk, flights to quality, and/or sentiment. We use the

Baa spread as an observable likely to be correlated with many of these factors, but our

measurement equation allows for both a constant and a slope coeffi cient on the Baa

spread along with observation error, in order to soak up variation in this latent variable

that may not move identically with the spread.

Estimating Beliefs We take the parameters pbi in Hb from a discretized beta

distribution, estimating its mean and variance as additional parameters of the structural

estimation. The parameters p∆i|j are specified as (1− ps)
(
ρ
|i−j−1|
b /

∑
i 6=j ρ

|i−j−1|
b

)
, where

ps and ρb < 1 are estimated parameters and |i − j − 1| measures the distance between
beliefs j and i, for i 6= j ∈ (1, 2, ..., B) . This creates a decaying function that makes the

probability of moving to contiguous beliefs more likely than jumping to very different

beliefs.

Let T be the sample size used in the estimation and let the vector of observations

8In principle, fed funds futures market rates may contain a risk premium that varies over time. If
such variation exists, it is absorbed in the estimation by the observation error for these equations. In
practice, risk premia variation in fed funds futures is known to be small when that variation is measured
over the short 30-minute windows surrounding FOMC announcements that we analyze (Piazzesi and
Swanson (2008)).
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as of time t be denoted by Xt. Let Pr
(
ξbt = i|XT ;θ

)
≡ πit|T denote the probability that

ξbt = i, for i = 1, 2,...,B + 1, based on information that can be extracted from the whole

sample and knowledge of the parameters θ, while πt|T is a (B + 1)× 1 vector containing

the elements
{
πit|T

}B+1

i=1
. We refer to these as the smoothed regime probabilities. The

time t perceived probability of exiting the current policy rule, i.e., of transitioning in the

next period to the Alternative policy regime ξAt , is given by P
bE

t ≡
∑B

i=1 π
i
t|T (1− pbi).

The time t perceived probability of exiting the current policy rule and transitioning in

h periods to ξAt is P
bE

t+h,t = 1′B+1

(
Hb
)h
πt|T , where 1′B+1 is an indicator vector with 1 in

the (B + 1)th position and zeros elsewhere. We use these estimated regime probabilities

to compute the most likely belief regime at each point in time and track how it changes

around Fed announcements and the whole sample. In the applied estimation, we set

B = 11.

5 Estimation Results

This section presents results from the structural estimation based on the modal values

of the posterior distribution for the parameters. The estimated credible sets indicate

that the parameters are tightly identified and we report other moments of the posterior

in Table A.1 of the Online Appendix. In the estimation, we allow for observation errors

on all variables except for inflation, GDP growth, the FFR, and the SP500-lagged GDP

ratio. The estimated model-implied series track their empirical counterparts closely, as

shown in Figure A.1 of the Online Appendix.

Parameter and Latent State Estimates Table 1 reports the posterior modes

for the policy rule parameters πT
ξPt
, ψπ,ξPt , ψ∆y,ξPt

and ρi,ξPt , where we use symmetric

priors. The results imply that the regime subperiods reported in Figure 1 are associated

with quantitatively large changes in the estimated policy rule, as well as in the asso-

ciated Alternative policy rules that we estimate investors perceived would come next.

The Great Inflation (GI) regime (1961:Q1-1978:Q3) is characterized by a high implicit

inflation target and a moderate level of inflation activism (ψπ,ξPt ), consistent with previ-

ous research arguing that the Fed accommodated high inflation during this period. The

perceived Alternative policy rule for this subperiod has a much lower inflation target,

but features less activism against both inflation and output growth, with inflation sta-

bilization perceived as the main objective. The anticipation of a lower inflation target is

in fact a defining feature of the subsequent Great Moderation (GM) regime that began

in 1978:Q4. The GM also featured a stronger emphasis on inflation stabilization than

the GI regime but little activism on economic growth. Moving to the Post-Millennial

(PM) regime, we find that policy rule parameters then shifted back toward slightly more
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Table 1: d
Table 1: Taylor Rule Parameters

Great Inflation Regime Great Moderation Regime Post-Millennial Regime
Realized Alternative Realized Alternative Realized Alternative

πTξ 12.5335 3.3930 2.2249 0.7463 2.4961 0.0608
ψπ 1.8866 0.6893 2.0546 2.7719 0.9189 0.8102
ψy 1.0113 0.4488 0.1170 0.6520 0.0710 0.5625
ψπ/ψy 1.8655 1.5359 17.5607 4.2514 12.9423 1.4404
ρi,1 + ρi,2 0.9954 0.9804 0.9850 0.9608 0.9956 0.8885

Notes: Posterior mode values of the parameters for the current and Alternative policy rules. Great

Inflation Regime: 1961:Q1-1978:Q3. Great Moderation Regime: 1978:Q4-2001:Q3. Post-Millennial

Regime: 2001:Q4-2020:Q1. The estimation sample spans 1961:Q1-2020:Q1.

accommodative values with a higher implicit inflation target, but with far less activism

on inflation and comparably low activism on output growth .

The estimated perceived Alternative policy rules of each regime show how investors

expected policy to change in the future. In the GM regime, investors evidently expected

the next rule to have an inflation target that was even lower than what was actively in

place at the time, along with greater activism in stabilizing both inflation and economic

growth. In the PM period investors expected an inflation target that was lower still, but

with a greater emphasis on output growth stabilization relative to inflation stabilization

compared to the realized rule during the PM period. Thus both the GM and PM periods

are characterized by expectations that the next policy rule would be both more hawkish

and more active on output growth than the realized rules of those periods. Since more

activism on output growth is indicative of more aggressive action to stabilize the real

economy, these features of the perceived Alternative rules are closely related to perceived

risk in the stock market, as discussed below.

A comment is in order about the estimated magnitudes for πT
ξPt
shown in Table 1.

Although this parameter plays the role of an “inflation target”in the interest rate rule,

unlike traditional New Keynesian models with a time invariant inflation target, πTξt is

appropriately interpreted as an implicit time t target rather than an explicit long-run

objective. To understand why, consider the PM period as an example. The structural

estimation implies that, to achieve the observed average CPI inflation of roughly 1.96%

over this period, πT
ξPt
needed to be 2.5%, well above what offi cially became in 2012 the

explicitly stated long-run inflation objective of 2%. Forward guidance “low-for-long”

interest rate policies and quantitative easing, two tools that were employed at the zero-

lower-bound (ZLB), are channels that manifest in the model as a higher values for πT
ξPt
,

since with γT > 0 these tools generate higher perceived trend inflation by households

even as nominal interest rates remain unchanged at the ZLB (equation (9)). Likewise, the

high value for πT
ξPt
in the GI regime represents an implicit central bank accommodation

of the high inflation of the 1970s that is diffi cult to explain otherwise.
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Table 2 presents estimation results for key model parameters other than those of

the policy rule.9 The estimates imply a very high level of inertia in household inflation

expectations. The constant gain parameter γ controlling the speed with which house-

holds update beliefs about inflation with new information on inflation is estimated to

be low (γ = 0.0001). Furthermore, the parameter γT controlling the speed with which

households’perceived trend inflation is influenced by shifts in πT
ξPt
is also estimated to

be small, though non-zero (γT = 0.006). Taken together, these findings imply that

households revise their beliefs about trend inflation only very slowly over time, both in

response to changes in the implicit inflation target and with past inflation realizations.

Table 2: dTable 2: Other Key Parameters

Parameter Mode Parameter Mode Parameter Mode Parameter Mode
σ 0.1099 γT 0.0056 σf 6.4950 σlp 0.2059
β 0.7566 σp 6.8680 σi 0.0353 σg 1.4543
φ 0.7510 βp 0.9964 σµ 0.1308
γ 0.0001 ps 0.9409 σk 6.3224

Notes: Posterior mode values of the parameters named in the row. The sample spans 1961:Q1-2020:Q1.

We estimate a moderate level of risk aversion for the investor (σP = 6.9). In terms of

the magnitude of the primitive economic shocks, monthly demand shocks are estimated

to be the largest quantitatively (σf = 6.5), compared to “supply side”shocks to trend

growth (σg = 1.45) or the markup shock (σµ = 0.13). Finally, the parameter ps is

estimated to be 0.94, indicating that investors maintain very firmly held beliefs, rarely

contemplating the possibility that they may change their minds about the likelihood of

moving to the next policy rule on the basis of new information.

Before leaving this section we report the model implications for basic asset pricing

moments. Table 3 shows that the model based moments for the log stock return, real

interest rate, and earnings growth, based on the modal parameter and latent state

estimates, match their data counterparts closely.

Investor Beliefs About Monetary Policy Over the Sample Figure 2 plots

the estimated perceived probability that investors assign to being in a new policy rule

regime in one year’s time. Specifically, the figure reports the end-of-the-month value for

P
bE

t+12,t ≡ πB+1
t+h,t|T = 1′B+1

(
Hb
)12

πt|T , where 1′B+1 is an indicator vector with 1 in the

(B + 1)th position and zeros elsewhere and πt|T is the vector of smoothed time t belief

regime probabilities. The vertical lines mark the timing of the two realized policy regime

changes in our sample.

9The model has a large number of additional auxiliary parameters that are used to map observables
into their model counterparts. To conserve space, estimates of these parameters are reported in the
Online Appendix.
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Table 3: dTable 3: Asset Pricing Moments

Moments Model Data
Mean StD Mean StD

Log Excess Return 7.20 14.93 7.42 14.85
Real Interest Rate 1.65 2.48 1.72 2.53
Log Real Earning Growth 2.62 25.06 1.96 17.24

Notes: Annualized monthly statistics (means are multiplied by 12 and standard deviations by
√

12) and

reported in units of percent. Excess returns are the log difference in the SP500 market capitalization

minus FFR. Real interest rate is FFR minus the average of the average of the one-year ahead forecasts

of inflation from the BC, SPF, SOC, and Livingston surveys. SP500 Earnings is deflated using the

GDP deflator and divided by population. The sample is 1961:M1 - 2020:M2.

Figure 2: Perceived Probability of Monetary Policy Regime Change
End-of-month perceived probability of monetary policy regime change
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Notes: Estimated end-of-month perceived probability that investors assign to exiting the current mon-

etary policy rule within one year. The sample spans 1961:M1-2020:M2.

Figure 2 shows that the perceived probability of a policy rule regime change fluc-

tuates strongly over the sample and typically increases before a realized policy change,

suggesting that financial markets have some ability to anticipate realized shifts in the

conduct of policy even though they cannot perfectly predict what the next policy rule

will look like. The perceived probability of a policy rule change also spikes upward

sharply in the financial crisis when no actual change occurred subsequently, though this

“mistake” is short-lasting. One interpretation of this brief spike is that investors may

have initially believed that the Fed could shift to a policy rule with more aggressive

stabilization of economic growth, but soon realized that the severity of the crisis and

the reality of the ZLB would constrain their ability to do so.

An important feature of the findings displayed in Figure 2 is that investor beliefs

about the probability of a regime change in the Fed’s policy rule continuously evolve
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outside of tight windows surrounding policy announcements. Indeed, most of the varia-

tion in investor beliefs about the future conduct of monetary policy occurs at times over

the sample that are not close temporally to an FOMC announcement, indicating that

the causal effect of central bank policy on investor beliefs and therefore on markets is

substantially more far reaching than what can be observed from market reactions in tight

windows surrounding Fed communications.10 An obvious explanation for this result is

that most Fed announcements are not immediately associated with a change in the rule.

Instead, what they mainly provide is a form of forward guidance on the factors that

are likely to trigger a change in the policy stance down the road. As new data become

available in between Fed communications, investor beliefs about future monetary pol-

icy are shaped by what was previously communicated, having consequences for markets

even if current policy is unchanged. Because high frequency event studies surrounding

Fed communications only capture the causal effects of the surprise component of any

announcement, they are by construction incapable of accommodating these additional

channels of influence outside of tight windows around events. The estimates portrayed

in Figure 2 are key inputs into our estimated overall causal impact of the Fed on markets

over the sample, discussed below in Section 5.

To underscore this point, Figure 3 shows the change in the estimated perceived prob-

ability of a monetary policy regime change within the next year in tight windows around

every FOMC announcement in our sample. We see that most FOMC announcements

result in little if any change in the perceived probability of a regime change in monetary

policy, again implying that financial markets do not learn about the possibility of policy

regime change only from the surprise component of a policy announcement. Naturally,

many FOMC announcements carry little news of any kind, consistent with the majority

of points lining up along the horizontal line at zero and the idea that significant changes

in the policy rule are infrequent.

Nevertheless, we find that some announcements are associated with sizable changes in

the perceived probability of exiting the current policy regime. The largest decline in this

perceived probability occurred on January 22nd, 2008 when the FOMC announced a 75

basis point reduction in the fed funds rate target and the perceived probability of a regime

change in the next year declined by more than 2% in the 30 minutes surrounding the

FOMC press release. The largest increase in the perceived probability of a policy regime

change occurs on April 18th, 2001 when the FOMC announced a 50 basis point reduction

in the fed funds rate. In this case the perceived probability of policy regime change

increased more than 1%. Although both FOMC actions were driven by a weakening

outlook, the economic contexts were very different. In April 2001, the U.S. economy

10Brooks, Katz, and Lustig (2018) report a related finding for the Treasury market with evidence of
persistent post-FOMC announcement drift in longer term yields.
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Figure 3: Change in the probability of a policy switch around FOMC announce-
ments
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Change in the perceived probability of a policy change within one year around FOMC announcements (%)
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Notes: Pre-/post- FOMC announcement log changes (10 minutes before/20 minutes after) in the prob-

ability that financial markets assign to a switch in the monetary policy rule occurring within one year.

The full sample has 220 announcements spanning February 4th, 1994 to February 28th, 2020. The

sample reported in the figure is 1993:M1-2020:M2.

had yet to near the ZLB in post-war history, and the 50 basis point cut in the target

rate was from a higher 5% level. These conditions along with the Fed rate cuts may have

signaled that the Fed was both willing and able to undertake an aggressive stabilization

of economic growth. By contrast, in January 2008 the world was in financial crisis and

U.S. economy had been near the ZLB as recently as 2003. Moreover, the cut in the target

rate was larger and from a lower 4.25% level. Taken together, these conditions may have

created the expectation that rates would soon return to near-ZLB levels, limiting the

Fed’s capacity to further stabilize growth.

High-Frequency Analysis To study why markets sometimes react strongly to

Fed announcements, we investigate what happens in tight windows around FOMC press

releases. In our analysis the pre-FOMC value is always either 10 minutes before or the

day before the FOMC press release time, depending on data availability (daily versus

minutely), and the post-FOMC value is either 20 minutes after or the day after the

release. Figure 4 displays the log change in pre-/post- FOMC announcement values of

variables we measure at high frequency, for each FOMC announcement in our sample.

Some announcements are associated with declines in the stock market within 30 minutes

surrounding the FOMC press release that exceed 2% in absolute terms or increases above

4%. Many announcements also produce large jumps in other financial market variables

such as FFF rates and the Baa spread.
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Figure 4: HF Changes in Prices and Expectations
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Notes: Log change in the observed variables in a short time-window around FOMC meetings. For all

but panels (b) and (c), this corresponds to a change measured from 10 minutes before to 20 minutes

after an FOMC statement is released. For panels (b) and (c), this corresponds to one day before to one

day after the FOMC statement is released. The full sample has 220 FOMC announcements spanning

February 4th, 1994 to February 28th, 2020. The sample reported in the figure is 1993:M1-2020:M2.

The mixed-frequency structural approach developed in this paper allows us to in-

vestigate a variety of possible explanations for these large market reactions. Consider

an FOMC announcement in month t. As above, let δh ∈ (0, 1) represent the number

of time units that have passed during month t up to some particular point t − 1 + δh.

Let Si(t\t−1+δh)|t−1+δh
denote a filtered estimate of investors’perceived time t economic

state based on their information up to time t − 1 + δh, conditional on ξbt = i. We

use the filtering algorithm described above along with high-frequency, forward-looking

data on investor expectations and financial markets to obtain estimates of the pre- and

post-FOMC announcement nowcasts Si(t\t−1+δh)|t−1+δh
, and the associated filtered belief

regime probabilities πit|t−1+δh
≡ Pr

(
ξbt = i|Xt−1+δh , X

t−1
)
, where δh assumes distinct val-

ues dpre and dpost that denote the times right before and right after the FOMC meeting.

These pre and post differences represent our estimates of the market’s revised nowcasts

for S and beliefs about the future conduct of monetary policy that are attributable to

the FOMC announcement.

Figure 5 displays the percent changes in pre-/post- announcement nowcasts of differ-

ent elements of St for every FOMC announcement in our sample. The figure shows that

some FOMC announcements led to frequent and large changes in investor perceptions

about trend growth gt, detrended output, ỹt, inflation, current demand ft, the earnings
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share kt, and the liquidity premium lpt. This implies that some announcements cause

investors to significantly revise their beliefs about the state of the economy and its core

driving forces.

Figure 5: HF Changes in State Variables
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Notes: Estimated changes in the perceived state of the economy from 10 minutes before to 20 minutes

after an FOMC press release. The full sample has 220 FOMC announcements spanning February 4th,

1994 to February 28th, 2020. The sample reported in the figure is 1993:M1-2020:M2.

To make further progress of our understanding of what markets learn from FOMC

announcements, we use estimates of Si(t\t−1+δh)|t−1+δh
and the belief regimes πit|t−1+δh

in

the minutes and days surrounding an FOMC meeting to observe changes in the perceived

shocks εi(t\t−1+δh)|t−1+δh
that investors must have discerned in order to explain revisions

in Si(t\t−1+δh)|t−1+δh
and πit|t−1+δh

. To do so consider the model solution applied to the

intramonth nowcasting updates:

Si(t\t−1+δh)|t−1+δh
= C

(
θξP,At

, ξbt = i,Hb
)

+ T (θξP,At
, ξbt = i,Hb)Sjt−1

+R(θξP,At
, ξbt = i,Hb)Qεi(t\t−1+δh)|t−1+δh

, (15)

where εi(t\t−1+δh)|t−1+δh
denotes the perceived Gaussian shocks estimated on the basis of

data available at time t − 1 + δh, conditional on being in belief regime ξ
b
t = i. Given

estimates of Si(t\t−1+δh)|t−1+δh
, C (·), T (·) , R (·) , Q, and Sjt−1 using the most likely belief

regime j at t − 1, invert (15) to solve for εi(t\t−1+δh)|t−1+δh
. The contribution of one

particular perceived shock k is to variation in Si(t\t−1+δh)|t−1+δh
is given by:

S·,k(t\t−1+δh)|t−1+δh
=
∑B

i=1 π
i
t|t−1+δh

R(θξP,At
, ξbt = i,Hb)Qεi,k(t\t−1+δh)|t−1+δh

(16)
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where εi,k(t\t−1+δh)|t−1+δh
is a vector constructed by setting each element of εi(t\t−1+δh)|t−1+δh

to zero other than the kth. The contribution of the belief regime is the remaining part:

S·,b(t\t−1+δh)|t−1+δh
=
∑B

i=1 π
i
t|t−1+δh

[
C
(
θξP,At

, ξbt = i,Hb
)

+ T (θξP,At
, ξbt = i,Hb)Sjt−1

]
.

(17)

Finally, the contribution of revisions in perceived shocks and belief regimes to jumps in

observed variables Xt is computed by taking the difference between the post- and pre-

announcement values of S·,k(t\t−1+δh)|t−1+δh
and S·,b(t\t−1+δh)|t−1+δh

and linking them back to

Xt using the mapping (14). We refer to these as shock decompositions.

Figure 6 reports shock decompositions for a selection of FOMC announcements based

on the 10 most quantitatively important absolute changes in the stock market. The

largest of these occurred on January 3, 2001 when the Fed met off-cycle to lower the

target funds rate by 50 basis points, driving the S&P 500 surge 4.2% over the 30 minutes

surrounding the news. The long red bar in panel (c) shows that the news led to investors

to perceive a large accommodative monetary policy shock. Yet panel (d) of Figure 6

shows that the main driver of the market’s jump was not the surprise decline in the funds

rate per se, but instead an upward revision in the nowcast for the corporate earnings

share, and a downward revision in the nowcast of the liquidity premium component

of the equity premium. The intuition for this result is straightforward. Keeping in

mind that these revisions in perceptions represent changes from 10 minutes prior to

announcement, markets are unlikely to have received this as news that the economy

was going into a recession, since those expectations would have already been baked into

beliefs before the announcement. What investors likely learned from the press release

was that the Fed would act more aggressively than previously believed to cushion the

effects of any recession that might occur. Relative to their expectations immediately

prior to this news, it is easy to see why investors would revise upward their nowcasts

for corporate earnings share, a variable that tends to fall sharply in recessions and is

directly related to output growth in the model, and why they would revise downward

their nowcasts for the liquidity premium, which is driven by the Baa credit spread, a

variable that tends to rise sharply in recessions. At the same time, investors revised

downward their nowcast for trend growth, which contributed to a jump downward in

expected GDP growth in panel (b) and an upward revision in the perceived output gap

and demand shock, leading to the jump upward in expected inflation observed in panel

(a).

An alternative possibility is that the January, 2001 announcement caused investors

to update their assessment of the parameters of the current policy rule. This is not a

feature of our baseline model, but we allow for it in an alternative version of the model

and report the results in Appendix K of the Online Appendix, which shows that the

results for the stock market shown in Figure 6 are virtually unchanged if investors update
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their understanding of the current rule after the announcement—even by sizable amounts.

The reason for this is that what matters for the long duration stock market is not where

the policy rule is today, but where it is likely to settle for the foreseeable future. Beliefs

about the latter are already captured in our baseline model by the investor’s continuous

belief updating about the probability of moving to the Alternative rule, so allowing for

additional updating about the parameters of the current rule changes little about the

longer-term outlook of relevance for the stock market.

The second and third most important FOMC events for the stock market were those

on April 18, 2001 and October 29, 2008, respectively, when the market increased 2.5%

and declined 2%, respectively, in the 30 minutes surrounding those press releases. For

the April 18, 2001 event, investor beliefs about the probability of near-term monetary

policy regime change played the largest quantitative role in the market’s jump. We

discuss the channels through which beliefs affect markets in the next section.

Figure 6: Top Ten FOMC: SP500
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(b) One y Bloomberg Expected GDP growth
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Notes: The figure reports shock decomposition for the 10 most relevant FOMC announcements based

on changes in the SP500-lagged GDP ratio. The sample is 1961:M1-2020:M2.

Overall, these findings relate to the literature on “information effects”as in Romer

and Romer (2000), Campbell, Evans, Fisher, and Justiniano (2012), and Nakamura and

Steinsson (2018). In the structural model of this paper, investors understand the general

equilibrium relationships between the Fed and the rest of the economy. Given this, we

use the term “information effect”more expansively to refer to any instance in which

a Fed announcement leads investors to revise their perception of the current or future

economic state, beyond perceptions pertaining directly to the path of future interest
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rates. The mixed-frequency approach of this paper complements the previous literature

on information effects by using a structural model to add granular detail on the perceived

sources of primitive economic risk responsible for observed changes in perceptions about

the economic state.

Discount Rate or Cash Flow Effects? In principle, the actions and announce-

ments of central banks can affect financial markets through either discount rate or cash

flow effects, or both. To study these different channels, we decompose price-lagged out-

put ratio into components of the representative investor’s subjective expectations. Start

with
PD
t

Yt−1

=
PD
t

Dt

Dt

Yt

Yt
Yt−1

or in logs

pgdpt = pdt + kt + ∆yt, (18)

where pgdpt ≡ ln
(
PD
t /Yt−1

)
and pdt ≡ ln

(
PD
t /Dt

)
. Let rext denote the log return rDt

in excess of the log real interest rate, rirt. Decompose pdt as in Campbell and Shiller

(1989) into the sum of three forward-looking terms:

pdt =
κpd,0

1− κpd,1
+ pdvt (∆d)− pdvt (rex)− pdvt (rir) (19)

where pdvt (x) ≡
∑∞

h=0 β
h
pEbt [xt+1+h], rirt+1 ≡

(
it+1 − Ebt [πt+1]

)
are computed under

the subjective expectations of the investor Ebt [·]. Subjectively expected return premia
pdvt (rex) are driven in the model by three factors: (i), realized regime change in mon-

etary policy ξPt , (ii) changing investor beliefs about the probability of future regime

change ξbt , and (iii) the liquidity premium lpt. Subjectively expected real interest rates

pdvt (rir) depend these factors, as well as on expectations about inflation and output

growth that enter the monetary policy rule.

Substituting (19) into (18), we can decompose pgdpt into four components:

pgdpt = eyt︸︷︷︸
earning share

+ pdvt (∆d)︸ ︷︷ ︸
earnings

− pdvt (rex)︸ ︷︷ ︸
premia

− pdvt (rir)︸ ︷︷ ︸
real int rate

, (20)

where eyt ≡ κpd,0
1−κpd,1 +kt+∆yt is the earnings-to-lagged output ratio, or “earnings share”

for brevity.

Figure 7 decomposes historical variation in pgdpt into the estimated components of

(20). The solid (blue) line in each panel plots the data for pgdpt, measured as the S&P

500-lagged GDP ratio. The red lines in panels (a)-(d) successively cumulate the right

hand side components in (20) so that they add to the observed pgdpt as we move from

panel (a) to panel (d).
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Figure 7: SP500-to-GDP decomposition
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Notes: Decomposition of the log SP500-to-lagged GDP ratio pgdp. The blue (solid) line represents
the data. The dashed (red) lines represent component in the model, decomposed as pgdpt = eyt +

pdvt (∆d) − pdvt (rex) − pdvt (rir) , where pdvt(x) ≡
∑∞
h=0 β

h
pEbt [xt+1+h]. Panel (a) plots pgdpt along

with eyt. Panel (b) plots pgdpt with eyt−pdvt (rex) . Panel (c) plots pgdpt with eyt−pdvt (rex)−pdvt(rir).
Panel (d) plots pgdpt in the data along with eyt + pdvt (∆d) − pdvt (rex) − pdvt (rir) . Great Inflation

Regime: 1961:Q1-1978:Q3. Great Moderation Regime: 1978:Q4-2001:Q3. Post-Millennial Regime:

2001:Q4-2020:Q1. The sample spans 1961:M1 - 2020:M2

Panel (a) of Figure 7 shows that eyt alone plays little role in fluctuations in pgdpt
up to about the year 2000, but it declines sharply in the financial crisis of 2008/09

contributing to the sharp drop in the stock market during the crisis and subsequently

boosting the market thereafter, echoing previous findings on the role of the earnings

share in Greenwald, Lettau, and Ludvigson (2019).

A comparison of panels (a) and (b) shows how the picture changes when we add

(the negative of) subjectively expected return premia −pdvt (rex) to eyt. The green

line in panel (b) plots a counterfactual in which we turn off the liquidity premium

shocks lpt, implying that—within a policy regime—the only factor driving fluctuations

in pdvt (rex) are changing investor beliefs about the probability of a regime change.

Outside of a few episodes, we see that the green counterfactual line is quite close to

the baseline estimate, implying that much of the variation in the estimated subjective

return premium is driven by beliefs about future policy regime shifts, rather than by

fluctuations in the liquidity premium. The exception to this occurs in the years after

the switch to the GM regime, where, absent liquidity shocks, the market would have

been substantially higher. Looking at the end of the GM regime, panel (b) shows that
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lower subjective return premia drove a surge in the market because investors perceived

a greater likelihood that the central bank would move to a policy rule more focused on

stabilizing the real economy. This can be understood from the results reported in from

Figure 2, which shows the sharp rise in the perceived probability of regime change at

the end of the GM period, in conjunction with the parameter estimates of the perceived

Alternative rule that investors expected to come next from Table 1. These shifts in

beliefs about future policy drove down the perceived quantity of risk in the stock market

and drove up valuations.

Panel (c) of Figure 7 adds −pdvt (rir) to eyt − pdvt (rex), so that the differences

between panels (b) and (c) isolates the role of subjectively expected real interest rates

in stock market fluctuations. Expectations of persistently low future real rates helped

support the stock market in the GI regime from 1961:Q1-1978:Q3, but by contrast,

expectations of persistently higher real rates pulled down the market with the shift to

a hawkish policy rule during the Volcker disinflation. Comparing panels (b) and (c)

we see that expectations of persistently higher future real interest rates largely explain

the low stock market valuations between 1978:Q3 to about 1990. Taken together, these

results imply that the Volcker disinflation and the Great Moderation that followed set

the stage for the high valuations in 1990s, by reducing expected volatility and lowering

subjective return premia. Initially, however, the switch into the GM regime dragged the

market down through the shift to a more hawkish policy rule with persistently higher

real interest rates.

Finally, panel (d) of Figure 7 adds pdvt (∆d) to eyt−pdvt (rex)−pdvt (rir) . Expected

future cash flow growth plays a small role in these stock market fluctuations.

Figure 8 exhibits a counterfactual for the PM period with a slightly different decom-

position of pgdpt, this time adding only one of the pdv (·) terms in (20) at a time to eyt.
We use the notation

pgdprex,t ≡ eyt − pdvt (rex) ; pgdprir,t ≡ eyt − pdvt (rir) ; pgdp∆d,t ≡ eyt + pdvt (∆d) .

The solid (blue) line in each panel of Figure 8 plots our baseline estimate of the com-

ponent series named in the subpanel. For panel (a), which plots pgdpt, our baseline model

estimate and the data series coincide by construction. Panels (b)-(c) plot the components

pgdprex,t, pgdprir,t, and pgdp∆d,t, respectively. The red/dashed (purple/dashed-dotted)

line in each panel plots a counterfactual in which the belief regime with the highest

(lowest) perceived probability of exiting the policy rule was always in place.11

Figure 8 conveys two main findings. First, it shows that investor beliefs about the

conduct of future monetary policy play an outsized role in stock market fluctuations.

11The (B + 1)×1 vector πt|T collects the estimated probabilities P
(
ξbt = i|XT ;θ

)
≡ πit|T that ξ

b
t = i,

for i = 1, 2,...,B + 1. The red-dashed (purple dashed-dotted) counterfactual replaces πt|T with a vector
that has 1 as the first (Bth) element and zeros elsewhere.
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Figure 8: Counterfactual simulations: The Post-Millennial period
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Notes: Counterfactual for the post-Millennial period. The red/dashed (purple/dashed-dotted) line plots

a counterfactual in which the belief regime with the highest (lowest) perceived probability of exiting

the policy rule was always in place. Panel (a) plots the model implications for pgdpt. Panel (b) plots

pgdprex,t. Panel (c) plots pgdprir,t. Panel (d) plots pgdp∆d,t. The sample for the counterfactual spans

2000:M3 to 2020:M2.

This can be observed from the quantitatively large gap between the red and purple lines

in panel (a). Had investors counterfactually maintained the belief throughout the PM

period that the central bank was very likely to exit the PM policy rule, the stock market

would have been much higher than it actually was over most of this period. Second,

panels (b)-(d) show that the reason for this large discrepancy has to do with the affect

of these beliefs on investors’ subjectively expected future return premia, rather than

their effect on subjectively expected real rates or payout growth. This can be observed

by noting that the red/blue line discrepancy is largest for pgdprex,t in panel (b), small

for pgdprir,t in panel (c), and non-existent for pgdp∆d,t in panel (d). Appendix K of the

Online Appendix shows an alternative counterfactual in which investors had different

beliefs about the current policy rule, while keeping fixed their beliefs about the the

conduct of future policy. In contrast the large effects found for different beliefs about

future policy shown in panel (a) of Figure 8, the Appendix figure shows that variation in

beliefs about the current rule have virtually no affect on the market’s level or evolution.

This happens because what matters for the heavily forward-looking stock market is

beliefs about Fed policies that extend well into the future, not those relevant only for

the present or very immediate near-term.
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Figure 9 examines cash flow versus discount rate effects at high frequency around

FOMC announcements. The figure decomposes the announcement-related jumps in pdt
into fluctuations driven by the pdvt (·) components on the right-hand-side of (19) for the
5 most relevant FOMC announcements sorted on the basis of jumps in the estimated

perceived probability of a regime change in the conduct of monetary policy over the next

year. Panel (a) of Figure 9 shows how the perceived probabilities of a regime change

shifted in the 30 minute windows surrounding each FOMC announcement, while panel

(b) shows the decomposition of the jump in pdt into its pdvt (·) components.

Figure 9: Jumps in risk perceptions, short rates, and earnings expectations
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Notes: Panel (a) shows the pre-/post-FOMC announcement change (10 minutes before/20 minutes

after) in the perceived probability of a monetary policy regime change occurring within one year. Panel

(b) decomposes the jump in the log price-payout ratio pd = pdvt (∆d) − pdvt(r
ex)− pdvt (rir) into

movements in the subjective equity risk premia pdvt(rex) (yellow bar), subjective expected real interest

rates pdvt(RIR) (blue bar), and subjective expected payout growth pdvt(∆d) (red bar). PD ratio is

pdvt (∆d)− pdvt (rex)− pdvt (rir). The sample is 1961:M1-2020:M2.

The April 18, 2001 announcement that the FOMC would lower its target for the

federal funds rate by another 50 basis points (following on the January 3, 2001 FOMC

decision that did the same) is the event associated with largest increase in the perceived

probability of exiting the policy rule over the next 12 months. This increase is depicted

in panel (a). The stock market rose 2.5% in the 30 minute window surrounding this

announcement. Panel (b) shows that the most important contributor to the surge in

the market was not the surprise cut in rates per se, but instead a decline in subjective

return premia. This happens in the model because the announcement triggered a jump

upward in the perceived probability of shifting within one year to a new policy regime

characterized by more aggressive stabilization of economic growth, which lowers expected
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volatility and with it the perceived quantity of risk in the stock market. By contrast,

subjectively expected future payout growth and real rates play negligible roles in the

market’s surge. The “Fed put”flavor (Cieslak and Vissing-Jorgensen (2021)) of this

event shows how Fed news can move markets by altering beliefs about future policies to

limit downside risk, immediately changing risk premia.

The FOMC announcement of January 22, 2008, is associated with the largest absolute

decline in the perceived probability of monetary regime change, and is the mirror image

of the April 18, 2001 event. In this case, the perceived probability that the central bank

would soon transition to an Alternative policy rule capable of more actively stabilizing

the real economy falls sharply, resulting in a large jump up in subjective risk premia.

Although p rose in the immediate aftermath of the announcement, perceived current-

period payout d rose by even more, driving pd down. Ultimately, pd declines because

the higher subjective return premia pdvt (rex) and lower subjectively expected future

payout growth pdvt (∆d) outweigh the expectation of persistently lower future real rates

pdvt (rir) created by the announcement’s dovish tone and actions (the Fed lowered the

target funds rate by 75 basis points).

In summary, the two events had opposite consequences for the stock market because

they had opposite effects on the perceived direction of future monetary policy. The April

18, 2001 announcement left investors with the belief that the future Fed policy would

engage more actively in limiting the risks that affect stocks, while the January 22, 2008

announcement did just the opposite. These results suggest that investors in 2008 were

far more worried than those in 2001 that the Fed might soon return to the ZLB with

limited capacity for economic stabilization.

6 Conclusion

We integrate a high-frequency monetary event study into a mixed-frequency macro-

finance model and structural estimation. The approach allows for jumps at Fed an-

nouncements in investor beliefs, providing granular detail on why markets react to cen-

tral bank announcements. We also provide a methodology for modeling expectations in

the presence of structural breaks, and show how forward-looking data can be used to

infer what agents expect from the next policy regime. The overall approach can be used

in a variety of other settings to provide a richer understanding of the role of news shocks

of any kind in driving financial market volatility.

The heightened responsiveness of financial markets to central bank communications

raises an important question: What are the underlying drivers of this phenomenon?

We find that the reasons involve a mix of factors, including revisions in investor beliefs

about the latent state of the economy, uncertainty over the future conduct of monetary

policy, and subjective reassessments of risk in the stock market. These dynamics stem
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from three primary sources. First, beliefs about the conduct of future policy react to

Fed news even if current policy is unchanged, affecting the perceived quantity of risk

in the stock market. Second, realized shifts in the central bank policy rule over the

sample have had a persistent influence on short rates, affecting valuations. Third, some

announcements are associated with sizable shifts in investor perceptions of the economic

state, altering the composition of perceived shocks investors believe will hit the economy.

Yet approach developed here also permits us to estimate the effects of monetary policy

over an extended sample, not merely in tight windows around Fed announcements.

Doing so, we find that beliefs about the future conduct of policy continuously evolve

over time, implying that announcement effects alone understate the impact of central

banks on markets.
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Online Appendix

A Priors, Posterior, and Smoothed Series

Table A.1 describes the posterior (left-hand-side of the table) and prior (right-hand-side
of the table) distributions for the parameters of the model. In the column “Type," N
stands for Normal, G stands for Gamma, IG stands for Inverse Gamma, and B stands
for Beta distribution, respectively. For all prior distributions, we report the mean and
the standard deviation. The priors for all parameters are diffuse and centered around
values typically found in the literature. We choose symmetric priors for the parameters
of the realized and alternative policy rules. For the posterior, we report the mode and
90% credible sets. Table A.1: d

Table A.1: Parameters
Posterior Prior Posterior Prior

Mode 5% 95% Mean Std Type Mode 5% 95% Mean Std Type
πTξ 12.5335 12.2776 12.7404 5 2.5 G β 0.7566 0.7502 0.7612 0.8 0.1 B
ρi,1 1.2911 1.2768 1.3286 0.5 0.25 N κ1 0.0043 0.0042 0.0043 0.1 0.05 G
ψπ,1 1.8866 1.8425 1.9429 0.5 0.25 N γ 0.0002 0.0002 0.0002 0.05 0.02 B
ρi,2 + ρi,1 0.9954 0.995 0.9958 0.5 0.2 B ρg 0.1332 0.1322 0.1343 0.5 0.2 B
ψ∆y 1.0113 0.9969 1.0342 2 1 G κ0 0.0047 0.0047 0.0048 0.1 0.05 G
πTξ 3.393 3.3787 3.4945 5 2.5 G ρf 0.542 0.5384 0.5466 0.5 0.2 B
ρi,1 0.3597 0.3482 0.3648 0.5 0.25 N φ 0.751 0.7444 0.7592 0.5 0.2 B
ψπ,1 0.6893 0.6822 0.7196 0.5 0.25 N r̄ 0 0 0 0.0017 0.0008 G
ρi,2 + ρi,1 0.9804 0.9758 0.9818 0.5 0.2 B γT 0.0056 0.0055 0.0057 0.2 0.1 B
ψ∆y 0.4488 0.4328 0.4612 2 1 G exp(k̄) 0.0345 0.0342 0.0347 0.04 0.02 B
πTξ 2.2249 2.198 2.2694 5 2.5 G σp 6.868 6.8268 6.9741 4 2 G
ρi,1 1.1878 1.154 1.2017 0.5 0.25 N βp 0.9964 0.9963 0.9968 0.95 0.025 B
ψπ,1 2.0546 1.9692 2.074 0.5 0.25 N l̄p 0.0015 0.0015 0.0016 0.0033 0.0017 N
ρi,2 + ρi,1 0.985 0.9833 0.9866 0.5 0.2 B λπ,1 0.3127 0.3111 0.3162 0.5 0.2 B
ψ∆y 0.117 0.1136 0.1208 2 1 G λπ,2 0.3056 0.302 0.3075 0.5 0.2 B
πTξ 0.7463 0.7305 0.7705 5 2.5 G ρk 0.9967 0.9966 0.9972 0.8 0.1 B
ρi,1 0.5372 0.5261 0.5477 0.5 0.25 N ρlp 0.923 0.9162 0.9259 0.5 0.2 B
ψπ,1 2.7719 2.7013 2.8571 0.5 0.25 N %2 0.2418 0.2397 0.2434 0 1 N
ρi,2 + ρi,1 0.9608 0.9478 0.9652 0.5 0.2 B %3 0.1594 0.1584 0.161 0 1 N
ψ∆y 0.652 0.6334 0.6538 2 1 G λk,∆y 57.1559 56.3137 57.4958 20 10 G
πTξ 2.4961 2.4702 2.5226 5 2.5 G ps 0.9409 0.9357 0.9426 0.9 0.08 B
ρi,1 1.3435 1.2988 1.3645 0.5 0.25 N ρH 0.3026 0.3005 0.305 0.15 0.1 B
ψπ,1 0.9189 0.8852 0.9445 0.5 0.25 N mean beta bel 0.962 0.9612 0.963 0.6 0.25 B
ρi,2 + ρi,1 0.9956 0.995 0.9961 0.5 0.2 B std beta bel 0.0358 0.0353 0.0361 0.15 0.05 B
ψ∆y 0.071 0.0695 0.0726 2 1 G int BAA 0.0196 0.0195 0.0199 0.02 0.01 N
πTξ 0.0608 0.0582 0.0606 5 2.5 N scale BAA 0.9233 0.9161 0.9327 2 1 G
ρi,1 0.5183 0.5068 0.5309 0.5 0.25 N σf 6.495 6.2551 6.9863 5 5 IG
ψπ,1 0.8102 0.8032 0.8379 0.5 0.25 N σi 0.0353 0.0341 0.0366 0.0167 0.0167 IG
ρi,2 + ρi,1 0.8885 0.8765 0.8985 0.5 0.2 B σµ 0.1308 0.125 0.1376 1 1 IG
ψ∆y 0.5625 0.5498 0.5685 2 1 G σk 6.3224 6.1467 6.403 0.1 0.05 IG
σ 0.1099 0.1087 0.1109 2 1 G σlp 0.2059 0.1953 0.2155 0.0083 0.0083 IG
%1 0.543 0.5406 0.5453 1 1 N σg 1.4543 1.4077 1.5003 1 1 IG

Notes: The table describes the posterior and prior distributions for the parameters of the model. In

the column "Type“, N stands for Normal, G stands for Gamma, IG stands for Inverse Gamma, and

B stands for Beta distribution, respectively. For all prior distributions, we report the mean and the

standard deviation. For the posterior, we report the mode and 90% credible sets.
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Figure A.1: Smoothed Series
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Notes: The figure displays the model-implied series (red, solid line) and the actual series (blue dotted

line). The model-implied series are based on smoothed estimates St|T of St, and exploit the mapping

to observables in (14) using the modal parameter estimates. The difference between the model-implied

series and the observed counterpart is attributable to observation error. We allow for observation

errors on all variables except for GDP growth, inflation, the FFR, and the SP500 capitalization to

GDP ratio. Great Inflation Regime: 1961:Q1-1978:Q3. Great Moderation Regime: 1978:Q4-2001:Q3.

Post-Millennial Regime: 2001:Q4-2020:Q1. The sample is 1961:M1-2020:M2.

B Data

Real GDP

The real Gross Domestic Product is obtained from the US Bureau of Economic Analysis.
It is in billions of chained 2012 dollars, quarterly frequency, seasonally adjusted, and at
annual rate. The source is from Bureau of Economic Analysis (BEA code: A191RX).
The sample spans 1959:Q1 to 2021:Q2. The series was interpolated to monthly frequency
using the method in Stock and Watson (2010). The quarterly series was downloaded on
August 20th, 2021.

GDP price deflator

The Gross Domestic Product: implicit price deflator is obtained from the US Bureau
of Economic Analysis. Index base is 2012=100, quarterly frequency, and seasonally
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adjusted. The source is from Bureau of Economic Analysis (BEA code: A191RD). The
sample spans 1959:Q1 to 2021:Q2. The series was interpolated to monthly frequency
using the method in Stock and Watson (2010). The quarterly series was downloaded on
August 20th, 2021.

Federal funds rate (FFR)

The Effective Federal Funds Rate is obtained from the Board of Governors of the Federal
Reserve System. It is in percentage points, quarterly frequency, and not seasonally
adjusted. The sample spans 1960:02 to 2021:06. The series was downloaded on August
20th, 2021

SP500 and SP500 futures

For our high-frequency analysis, we use tick-by-tick data on SP500 index obtained from
tickdata.com. The series was downloaded on September 22th, 2021 from https://www.
tickdata.com/.We create the minutely data using the close price within each minute.
Within trading hours, we construct minutely S&P 500 market capitalization by multi-
plying the S&P 500 index by the previous month’s S&P 500 Divisor. (The index is the
market capitalization of the 500 companies covered by the index divided by the S&P 500
divisor, roughly the number of shares outsanding across all companies.) The S&P 500
divisor is available at the URL: https://ycharts.com/indicators/sp_500_divisor.
We supplement SP500 index using SP500 futures for events that occur in off-market
hours. We use the current-quarter contract futures. We purchased the SP500 futures
from CME group at URL: https://datamine.cmegroup.com/. Our sample spans Janu-
ary 2nd 1986 to September 17th, 2021. The SP500 futures data were downloaded on
October 6, 2021.

SP500 Earnings and Market Capitalization

For our structural estimation, we obtained monthly S&P earnings from multpl.com at
URL: https://www.multpl.com/shiller-pe. These are earnings per share (EPS) data
that span 1959:01-1988:03. We obtain quarterly post-1988:03 EPS from spglobal.com at
URL: https://www.spglobal.com/spdji/en/documents/additional-material/sp-500-eps-est.
xlsx, which we linearly interpolate to monthly observations, resulting in a monthly
earnings pre share series spanning 1959:01 to 2021:06. The S&P 500 divisor is a mea-
sure of the number of shares outsanding across all 500 companies.To convert EPS to
total earnings, we multiply EPS by the monthly S&P 500 divisor available at URL:
https://ycharts.com/indicators/sp_500_divisor. For S&P market cap, we ob-
tain the end-of-month series from Ycharts.com available at https://ycharts.com/
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indicators/sp\_500\_market\_cap. All finally constructed and spliced series span
the periods 1959:01 to 2021:06 and were downloaded on December 22nd, 2021.

Baa Spread, 20-yr T-bond, Long-term US government securities

We obtained daily Moody’s Baa Corporate Bond Yield from FRED (series ID: DBAA) at
URL: https://fred.stlouisfed.org/series/BAA, US Treasury securities at 20-year
constant maturity from FRED (series ID: DGS20) at URL: https://fred.stlouisfed.
org/series/DGS20, and long-term US government securities from FRED (series ID: LT-
GOVTBD) at URL: https://fred.stlouisfed.org/series/LTGOVTBD. The sample
for Baa spans the periods 1986:01 to 2021:06. To construct the long term bond yields,
we use LTGOVTBD before 2000 (1959:01 to 1999:12) and use DGS20 after 2000 (2000:01
to 2021:06). The Baa spread is the difference between the Moody’s Corporate bond
yield and the 20-year US government yield. The excess bond premium is obtained at
URL: https://www.federalreserve.gov/econres/notes/feds-notes/ebp_csv.csv.
All series were downloaded on Feb 21, 2022.

Bloomberg Consensus Inflation and GDP forecasts

We obtain the Bloomberg (BBG) US GDP (id: ECGDUS) and inflation (id: ECPIUS)
consensus mean forecast from the Bloomberg Terminal available on a daily basis up to
a few days before the release of GDP and inflation data. The Bloomberg (BBG) US
consensus forecasts are updated daily (except for weekends and holidays) and reports
daily quarter-over-quarter real GDP growth and CPI forecasts from 2003:Q1 to 2021Q2.
These forecasts provide more high-frequency information on the professional outlook for
economic indicators. Both forecast series were downloaded on October 21, 2021.

Livingston Survey Inflation Forecast

We obtained the Livingston Survey mean 1-year and 10-year CPI inflation forecast from
the Federal Reserve Bank of Philadelphia, URL: https://www.philadelphiafed.org/
surveys-and-data/real-time-data-research/livingston-historical-data. Our
sample spans 1947:06 to 2021:06. The forecast series were downloaded on September 20,
2021.

Michigan Survey of Consumers Inflation Forecasts

We construct MS forecasts of annual inflation of respondents answering at time t. Each
month, the SOC contains approximately 50 core questions, and a minimum of 500 inter-
views are conducted by telephone over the course of the entire month, each month. We
use two questions from the monthly survey for which the time series begins in January
1978.
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1. Annual CPI inflation: To get a point forecast, we combine the information in the
survey responses to questions A12 and A12b.

• Question A12 asks (emphasis in original): During the next 12 months, do you
think that prices in general will go up, or go down, or stay where they are
now?

• A12b asks (emphasis in original): By about what percent do you expect prices
to go (up/down) on the average, during the next 12 months?

2. Long-run CPI inflation: To get a point forecast, we combine the information in
the survey responses to questions A13 and A13b.

• Question A13 asks (emphasis in original): What about the outlook for prices
over the next 5 to 10 years? Do you think prices will be higher, about the
same, or lower, 5 to 10 years from now?

• A13b asks (emphasis in original): By about what percent per year do you
expect prices to go (up/down) on the average, during the next 5 to 10 years?

All series were downloaded on September 17th, 2021.

Bluechip Inflation and GDP Forecasts

We obtain Blue Chip expectation data from Blue Chip Financial Forecasts from Wolters
Kluwer. The surveys are conducted each month by sending out surveys to forecasters
in around 50 financial firms such as Bank of America, Goldman Sachs & Co., Swiss
Re, Loomis, Sayles & Company, and J.P. Morgan Chase. The participants are surveyed
around the 25th of each month and the results published a few days later on the 1st of
the following month. The forecasters are asked to forecast the average of the level of
U.S. interest rates over a particular calendar quarter, e.g. the federal funds rate and the
set of H.15 Constant Maturity Treasuries (CMT) of the following maturities: 3-month,
6-month, 1-year, 2-year, 5-year and 10-year, and the quarter over quarter percentage
changes in Real GDP, the GDP Price Index and the Consumer Price Index, beginning
with the current quarter and extending 4 to 5 quarters into the future.
In this study, we look at a subset of the forecasted variables. Specifically, we use

the Blue Chip micro data on individual forecasts of the quarter-over-quarter (Q/Q)
percentage change in the Real GDP, the GDP Price Index and the CPI, and convert to
quarterly observations as explained below.

1. CPI inflation: We use quarter-over-quarter percentage change in the consumer
price index, which is defined as
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“Forecasts for the quarter-over-quarter percentage change in the CPI (consumer
prices for all urban consumers). Seasonally adjusted, annual rate.”

Quarterly and annual CPI inflation are constructed the same way as for PGDP
inflation, except CPI replaces PGDP.

2. For real GDP growth, We use quarter-over-quarter percentage change in the Real
GDP, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the level of chain-
weighted real GDP. Seasonally adjusted, annual rate. Prior to 1992, Q/Q % change
(SAAR) in real GNP.”

The surveys are conducted right before the publication of the newsletter. Each issue
is always dated the 1st of the month and the actual survey conducted over a two-day
period almost always between 24th and 28th of the month. The major exception is
the January issue when the survey is conducted a few days earlier to avoid conflict
with the Christmas holiday. Therefore, we assume that the end of the last month
(equivalently beginning of current month) is when the forecast is made. For example,
for the report in 2008 Feb, we assume that the forecast is made on Feb 1, 2008. We
obtained Blue Chip Financial Forecasts from Wolters Kluver in several stages starting
in 2017 and with the last update purchased in June of 2022 and received on June 22,
2022. URL:https://law-store.wolterskluwer.com/s/product/blue-chip-financial-forecast-
print/ 01tG000000LuDUCIA3.

Survey of Professional Forecasters (SPF)

The SPF is conducted each quarter by sending out surveys to professional forecasters,
defined as forecasters. The number of surveys sent varies over time, but recent waves
sent around 50 surveys each quarter according to offi cials at the Federal Reserve Bank
of Philadelphia. Only forecasters with suffi cient academic training and experience as
macroeconomic forecasters are eligible to participate. Over the course of our sample,
the number of respondents ranges from a minimum of 9, to a maximum of 83, and the
mean number of respondents is 37. The surveys are sent out at the end of the first
month of each quarter, and they are collected in the second or third week of the middle
month of each quarter. Each survey asks respondents to provide nowcasts and quarterly
forecasts from one to four quarters ahead for a variety of variables. Specifically, we
use the SPF micro data on individual forecasts of the price level, long-run inflation,
and real GDP.1 Below we provide the exact definitions of these variables as well as our

1Individual forecasts for all variables can be downloaded at
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters/historical-data/individual-forecasts.
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method for constructing nowcasts and forecasts of quarterly and annual inflation for
each respondent.2

The following variables are used on either the right- or left-hand-sides of forecasting
models:

1. Quarterly and annual inflation (1968:Q4 - present): We use survey responses for
the level of the GDP price index (PGDP), defined as

"Forecasts for the quarterly and annual level of the chain-weighted GDP price
index. Seasonally adjusted, index, base year varies. 1992-1995, GDP implicit
deflator. Prior to 1992, GNP implicit deflator. Annual forecasts are for the annual
average of the quarterly levels."

Since advance BEA estimates of these variables for the current quarter are un-
available at the time SPF respondents turn in their forecasts, four quarter-ahead
inflation and GDP growth forecasts are constructed by dividing the forecasted level
by the survey respondent-type’s nowcast. Let F(i)

t [Pt+h] be forecaster i’s prediction
of PGDP h quarters ahead and N(i)

t [Pt] be forecaster i’s nowcast of PGDP for the
current quarter. Annualized inflation forecasts for forecaster i are

F(i)
t [πt+h,t] = (400/h)× ln

(
F(i)
t [Pt+h]

N(i)
t [Pt]

)
,

where h = 1 for quarterly inflation and h = 4 for annual inflation. Similarly, we
construct quarterly and annual nowcasts of inflation as

N(i)
t [πt,t−h] = (400/h)× ln

(
N(i)
t [Pt]

Pt−h

)
,

where h = 1 for quarterly inflation and h = 4 for annual inflation, and where Pt−1

is the BEA’s advance estimate of PGDP in the previous quarter observed by the
respondent in time t, and Pt−4 is the BEA’s most accurate estimate of PGDP four
quarters back. After computing inflation for each survey respondent, we calculate
the 5th through the 95th percentiles as well as the average, variance, and skewness
of inflation forecasts across respondents.

2. Long-run inflation (1991:Q4 - present): We use survey responses for 10-year-ahead
CPI inflation (CPI10), which is defined as

"Forecasts for the annual average rate of headline CPI inflation over the next 10
years. Seasonally adjusted, annualized percentage points. The "next 10 years"

2The SPF documentation file can be found at https://www.philadelphiafed.org/-/media/research-
and-data/real-time-center/survey-of-professional-forecasters/spf-documentation.pdf?la=en.
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includes the year in which we conducted the survey and the following nine years.
Conceptually, the calculation of inflation is one that runs from the fourth quarter of
the year before the survey to the fourth quarter of the year that is ten years beyond
the survey year, representing a total of 40 quarters or 10 years. The fourth-quarter
level is the quarterly average of the underlying monthly levels."

Only the median response is provided for CPI10, and it is already reported as
an inflation rate, so we do not make any adjustments and cannot compute other
moments or percentiles.

3. Real GDP growth (1968:Q4 - present): We use the level of real GDP (RGDP),
which is defined as

"Forecasts for the quarterly and annual level of chain-weighted real GDP. Season-
ally adjusted, annual rate, base year varies. 1992-1995, fixed-weighted real GDP.
Prior to 1992, fixed-weighted real GNP. Annual forecasts are for the annual av-
erage of the quarterly levels. Prior to 1981:Q3, RGDP is computed by using the
formula NGDP / PGDP * 100."

Source: Federal Reserve Bank of Philadelphia.All series were downloaded on Septem-
ber 17th, 2021.

Fed Funds Futures

We use tick-by-tick data on Fed funds futures (FFF) and Eurodollar futures obtained
from the CMEGroup. Our sample spans January 3, 1995 to June 2, 2020. FFF contracts
settle based on the average federal funds rate that prevails over a given calendar month.
Fed funds futures are priced at 100 − f (n)

t , where f (n)
t is the time-t contracted federal

funds futures market rate that investors lock in. Contracts are monthly and expire at
month-end, with maturities ranging up to 60 months. For the buyer of the futures
contract, the amount of

(
f

(n)
t − rt+n

)
× $D, where rt+n is the ex post realized value of

the federal funds rate for month t + n calculated as the average of the daily Fed funds
rates in month t + n, and $D is a dollar “deposit”, represents the payoff of a zero-cost
portfolio.
Contracts are cleaned following communication with the CME Group. First, trades

with zero volume, which indicate a canceled order, are excluded. Floor trades, which
do not require a volume on record, are included. Next, trades with a recorded expiry
(in YYMM format) of 9900 indicate bad data and are excluded (Only 1390 trades, or
less than 0.01% of the raw Fed funds data, have contract delivery dates of 9900). For
trades time stamped to the same second, we and keep the trade with the lowest sequence
number, corresponding to the first trade that second.

8



Fed funds futures trade prices were quoted in different units prior to August 2008.
To standardize units across our sample, we start by noting that Fed funds futures are
priced to the average effective Fed funds rate realized in the contract month. And in our
sample, we expect a reasonable effective Fed funds rate to correspond to prices in the
90 to 100 range. As such, we rescale prices to be less than 100 in the pre-August 2008
subsample.3 After rescaling, a small number of trades still appear to have prices that are
far away from the effective Fed funds rates at both trade day and contract expiry, along
with trades in the immediate transactions. The CME Group could not explain this data
issue, so following Bianchi, Kind, and Kung (2019) and others in the high frequency
equity literature, we apply an additional filter to exclude trades with such non-sensible
prices. Specifically, for each maturity contract, we only keep trades where

|pt − pt(k, δ)| < 3σt(k, δ) + γ,

where pt denotes the trade price (where t corresponds to a second), and pt(k, δ) and
σt(k, δ) denote the average price and standard deviation, respectively, centered with k/2
observations on each side of t excluding δk/2 trades with highest price and excluding
δk/2 trades with lowest price. Finally, γ is a positive constant to account for the cases
where prices are constant within the window. Our main specification uses k = 30,
δ = 0.05 and γ = 0.4, and alternative parameters produce similar results.

C Structural Breaks as Nonrecurrent Regime-Switching

Let T be the sample size used in the estimation and let the vector of observations as
of time t be denoted zr,t. The sequence ξ

P
t = {ξP1 , ..., ξPT } of regimes in place at each

point is unobservable and needs to be inferred jointly with the other parameters of
the model. We use the Hamilton filter (Hamilton (1994)) to estimate the smoothed
regime probabilities P

(
ξPt = i|zr,T ;θr

)
, where i = 1, ..., NP . We then use these regime

probabilities to estimate the most likely historical regime sequence ξPt over our sample
as described in the next subsection.
The specifications to be estimated are

zr,t = rξPt + εrt , zr,t = {rt,mpst}

where εrt ∼ N (0, σ2
r), and rξPt is a time-varying intercept governed by a discrete valued

latent state variable, ξPt , that follows a NP -state nonrecurrent regime-switching Markov
with transition matrix H. Bayesian methods with flat priors are used estimate the

parameters θr =
(
rξPt , σ

2
r, vec (H)′

)′
over the period 1961:Q1-2020:Q1 and to estimate

the most likely historical regime sequence for ξPt over that sample.

3For trades with prices significantly greater than 100, we repeatedly divide by 10 until prices are in
the range of 90 to 100. We exclude all trades otherwise.
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To capture the phenomenon of nonrecurrent regimes, we suppose that ξPt follows a
Markov-switching process in which new regimes can arise but do not repeat exactly as
before. This is modeled by specifying the transition matrix over nonrecurrent states,
or “structural breaks.”If the historical sample has NP nonrecurrent regimes (implying
NP − 1 structural breaks), the transition matrix for the Markov process takes the form

H =



p11 0 · · · · · · · · · · · · 0
1− p11 p22 0 · · · · · · · · · 0

0 1− p22 p33 0 · · · · · · ...
... 0 1− p33

. . .
...

... 0
...

. . .
...

...
...

...
...

. . . pNP ,NP 0
0 · · · · · · · · · 0 1− pNP ,NP 1


, (A.1)

where Hij ≡ p
(
ξPt = i|ξPt−1 = j

)
. For example, if there were NP = 2 nonrecurrent

regimes in the sample, we would have

H =

[
p11 0

1− p11 1

]
.

The above process implies that, if you are currently in regime 1, you will remain there
next period with probability p11 or exit to regime 2 with probability 1 − p11. Upon
exiting to regime 2, since there are only two regimes in the sample and the probability
p12 of returning exactly to the previous regime 1 is zero, p22 = 1.

D Most Likely Regime Sequence

For regime switches in the mean of mpst where the specification that is estimated is

mpst = rξPt + εrt ,

εrt ∼ N (0, σ2
r), and rξPt is an intercept governed by a discrete valued latent state vari-

able, ξPt , that is presumed to follow a NP -state nonrecurrent regime-switching Markov

with transition matrix H. The vector θr =
(
rξPt , σ

2
r, vec (H)′

)′
denotes the set of pa-

rameters to be estimated. The most likely regime sequence is the regime sequence
ξP,T = {ξ̂P1 , ..., ξ̂

P

T } that is most likely to have occurred, given the estimated posterior
mode parameter values for θr. This sequence is computed as follows.
Let P

(
ξPt = i|zt−1;θr

)
≡ πit|t−1. First, run Hamilton’s filter to get the vector of

filtered regime probabilities πt|t, t = 1, 2, ..., T . The Hamilton filter can be expressed
iteratively as

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hπt|t
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where the symbol � denotes element by element multiplication, ηt is a vector whose j-th
element contains the conditional density p(mpst|ξPt = j;θr), i.e.,

ηj,t =
1√

2πσr
exp

{
− (mpst − rj)2

2σ2
r

}
,

and where 1 is a vector with all elements equal to 1. The final term, πT |T is returned with
the final step of the filtering algorithm. Then, a recursive algorithm can be implemented
to derive the other smoothed probabilities:

πt|T = πt|t �
[
H′
(
πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division. To choose the regime sequence most
likely to have occurred given our parameter estimates, consider the recursion in the next
to last period t = T − 1:

πT−1|T = πT−1|T−1 �
[
H′
(
πT |T (÷) πT |T−1

)]
.

Suppose we have Np = 3 regimes. We first take πT |T from the Hamilton filter and
choose the regime that is associated with the largest probability, i.e., if πT |T = (.8, .1, .1),

where the first element corresponds to the probability of regime 1, we select ξ̂
P

T = 1,
indicating that we are in regime 1 in period T. We now update πT |T = (1, 0, 0) and
plug into the right-hand-side above along with the estimated filtered probabilities for
πT−1|T−1, πT |T−1 and estimated transition matrix H to get πT−1|T on the left-hand-side.
Now we repeat the same procedure by choosing the regime for T −1 that has the largest
probability at T − 1, e.g., if πT−1|T = (.2, .7, .1) we select ξ̂T−1 = 2, indicating that we
are in regime 2 in period T −1, we then update to πT−1|T = (0, 1, 0), which is used again
on the right-hand-side now

πT−2|T = πT−2|T−2 �
[
H′
(
πT−1|T (÷) πT−1|T−2

)]
.

We proceed in this manner until we have a most likely regime sequence ξP,T for the
entire sample t = 1, 2, ..., T . Two aspects of this procedure are worth noting. First, it
fails if the updated probabilities are exactly (.333, .333, .333). Mathematically this is
virtually a zero probability event. Second, note that this procedure allows us to choose
the most likely regime sequence by using the recursive formula above to update the
filtered probabilities sequentially working backwards from t = T to t = 1. This allows
us to take into account the time dependence in the regime sequence as dictated by the
transition probabilities.
Follow the same procedure to obtain the most likely belief regime sequence ξbt , where

the structural model is described by B2 conditional densities

f
(
Xt−1+δh |ξ

b
t−1 = j, ξbt = i,Xt−1

)
= (2π)−NX/2 |f (i,j)

t|t−1+δh
|−1/2 exp

{
−1

2
e
(i,j)′
t|t−1+δh,t−1

f
(i,j)
t|t−1+δh,t−1

e
(i,j)
t|t−1+δh,t−1

}
.
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Define ξ∗t describe a B
2-state Markov chain incorporating all the (i, j) combinations

above and recast f (·) as B2 densities ηt = f (Xt−1+δh |ξ∗t = i,X t−1) to use in the com-
putation of πt|t.

E Price-Output Decompositions

Mapping from price to output (measured as GDPt) is

Pt
GDPt−1

=
Pt
Dt

Dt

GDPt

GDPt
GDPt−1

pgdpt = pdt + kt + ỹt + gt − ỹt−1

Below we decompose pdt to write:

pgdpt =
κpd,0

1− κpd,1
+ kt + yt + gt − ỹt−1︸ ︷︷ ︸

earning share component

+ pdvt (∆d)︸ ︷︷ ︸
earnings

− pdvt (rex)︸ ︷︷ ︸
premia

− pdvt (rir)︸ ︷︷ ︸
RIR

pgdprex,t =
κpd,0

1− κpd,1
+ kt + ỹt + gt − ỹt−1︸ ︷︷ ︸

earning share component

− pdvt (rex)︸ ︷︷ ︸
premia

pgdprir,t =
κpd,0

1− κpd,1
+ kt + ỹt + gt − ỹt−1︸ ︷︷ ︸

earning share component

− pdvt (rir)︸ ︷︷ ︸
RIR

pgdp∆d,t =
κpd,0

1− κpd,1
+ kt + ỹt + gt − ỹt−1︸ ︷︷ ︸

earning share component

+ pdvt (∆d)︸ ︷︷ ︸
earnings

where

pdt = κpd,0 + Ebt [mt+1 + ∆dt+1 + κpd,1pdt+1] +

+.5Vbt [mt+1 + ∆dt+1 + κpd,1pdt+1] .

The solution approximates around the balanced growth path with Dt+1
Dt

= G, where
G is the gross growth rate of the economy. The Euler equation under the balanced

12



growth path is

1 =

[
Mt+1

(
Pt+1/Dt+1 + 1

Pt/Dt

)
Dt+1

Dt

]
=

[
βp

(
Dt+1

Dt

)−σp (Pt+1/Dt+1 + 1

Pt/Dt

)
Dt+1

Dt

]

=

βpG1−σp︸ ︷︷ ︸
β̃p

(
P/D + 1

P/D

) =>

1

β̃p
=

(
P/D + 1

P/D

)
=>

P/D =
β̃p

1− β̃p
.

Denote the log steady state price-payout ratio as ln (P/D) = pd, thus we have

pd = ln

(
β̃p

1− β̃p

)
.

κpd,1 = exp(pd)/(1 + exp(pd)) =
β̃p

1− β̃p

[
1 +

β̃p

1− β̃p

]−1

= β̃p

κpd,0 = ln(exp(pd) + 1)− κpd,1pd = ln

(
1

1− β̃p

)
− β̃pln

β̃p

1− β̃p
= −β̃plnβ̃p −

(
1− β̃p

)
ln
(

1− β̃p
)

The log return obeys the following approximate identity (Campbell and Shiller
(1989)):

rDt+1 = κpd,0 + κpd,1pdt+1 − pdt + ∆dt+1,

where κpd,1 = exp(pd)/(1+exp(pd)), and κpd,0 = log
(
exp(pd) + 1

)
−κpd,1pd. Combining

all of the above, the log equity premium is

Ebt
[
rDt+1

]
−
(
it − Ebt [πt+1]

)︸ ︷︷ ︸
Equity Premium

=

[
−.5Vbt

[
rDt+1

]
− COVbt

[
mt+1, r

D
t+1

]
+.5Vbt [πt+1]− COVbt [mt+1, πt+1]

]
︸ ︷︷ ︸

Risk Premium

+ lpt︸︷︷︸,
Liquidity Premium

Then

pdt = κpd,0 + Ebt
[
∆dt+1 − rDt+1 + κpd,1pdt+1

]
pdt = κpd,0 + Ebt

[
∆dt+1 −

(
rext+1 − rirt+1

)
+ κpd,1pdt+1

]
13



where Ebt
[
rext+1

]
= Ebt

[
rDt+1

]
− rirt+1, where rirt+1 ≡

(
it+1 − Ebt [πt+1]

)
.

Solving forward:

pdt = κpd,0 + Ebt
[
∆dt+1 − rext+1 − rirt+1

]
+

+κpd,1Ebt
[
κpd,0 + Ebt

[
∆dt+2 − rext+2 − rirt+1 + κpd,1pdt+2

]]
Thus:

pdt =
κpd,0

1− κpd,1
+
(
1∆d − 1E(rex) − 1rir

)∑∞
h=0 κ

h
pd,1Ebt [St+1+h]

where 1x is a vector of all zeros except for a 1 in the xth position. This can be written
as:

pdt =
κpd,0

1− κpd,1
+ pdvt (∆d)− pdvt (rex)− pdvt (rir)

Using the solution:

pdt =
κpd,0

1− κpd,1
+
(
1∆d − 1E(rex) − 1rb

) (
I− κpd,1Tξt

)−1 [
TξtSt + (I− κpd,1)−1Cξt

]
.

Thus, we can decompose movements in the pdt into those attributable to expected
dividends, equity premia, and expected real interest rates:

pgdpt =
κpd,0

1− κpd,1
+ kt + yt + gt − yt−1︸ ︷︷ ︸

earning share component

+ pdvt (∆d)︸ ︷︷ ︸
earnings

− pdvt (rex)︸ ︷︷ ︸
premia

− pdvt (rir)︸ ︷︷ ︸
RIR

.

F Solution and Estimation Details

This appendix presents details on the solution and estimation. An overview of the steps
are as follows.

1. We first solve the macro block set of equations involving a set of macro state
variables SMt ≡ [ỹt, gt, πt, it, πt, ft]

′. The MS-VAR solution consists of a system of
equations taking the form

SMt = CM

(
θξPt

)
+ TM(θξPt )SMt−1 +RM(θξPt )QMε

M
t ,

where εMt = (εf,t, εi,t, εg,t, εµ,t). Since this block involves no forward-looking vari-
ables and only depends on the pre-determined policy regimes, this block can be
solved analytically. See Bianchi, Lettau, and Ludvigson (2022).

2. Use the solution for SMt based on the current realized policy regime ξPt and then
resolve the model based on the Alternative regime, i.e., obtain

SMt = CM

(
θξAt

)
+ TM(θξAt )SMt−1 +RM(θξAt )QMε

M
t .

Store the two solutions. SMt under ξPt is mapped into the observed current macro
variables in our observation equation.
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3. To identify the parameters of the Alternative policy rule, the perceived transition
matrixHb and belief regime probabilities governing moving to the Alternative rule,
we use:

(a) Measures of expectations from professional forecast surveys and futures mar-
kets. Given the perceived transition matrix of the investor Hb, use it to
compute investor expectations for future macro variables that take into ac-
count the perceived probability of transitioning to the Alternative rule in
the future. See the section below on “Computing Expectations with Regime
Switching and Alternative Policy Rule.”These give us investor expectations
of the macro block variables used in our observation equation.

(b) Stock prices. The asset pricing block of equations involves conditional subjec-
tive variance terms that are affected by Markov-switching random variables
in the model. The subsection “Risk Adjustment with Lognormal Approxima-
tion,”below explains the approximation used to preserve lognormality of the
entire system. This part uses the approach in Bianchi, Kung, and Tirskikh
(2018) who in turn build on Bansal and Zhou (2002) and is combined with the
algorithm of Farmer, Waggoner, and Zha (2011) to solve the overall system of
model equations, where investors form expectations taking into account the
probability of regime change in the future. The state variables for the full
system are

St =
[
SMt ,mt, pdt, kt, lpt,Ebt (mt+1) ,Ebt (pdt+1)

]
.

This leaves us with the MS-VAR solution consists of a system of equations
taking the form

St = C
(
θξPt , ξ

b
t ,H

b
)

+ T (θξPt , ξ
b
t ,H

b)St−1 +R(θξPt , ξ
b
t ,H

b)Qεt,

where εt = (εf,t, εi,t, εg,t, εµ,t, εk,t, εlp,t). Since pdt depends the risk adjustment
and Ebt (pdt+1) , its value is also informative about the parameters of the Al-
ternative rule, Hb and belief regime probabilities. Unlike the formulas that
are required to relate data on expectations to future macro variables in step
(a), the formulas governing these relationships are solved numerically using
the solution algorithm described above.

4. We estimate the model by combining the solution above with an observation equa-
tion that includes macro, asset pricing, and survey expectation variables. See the
subsection “Estimation”below.
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G Computing Expectations with Regime Switching and Alter-
native Policy Rule

In what follows, we explain how to use expectations to infer what alternative regimes
agents have in mind. Expectations about inflation, FFR, and GDP growth depend on the
regime currently in place, the alternative regime, and the probability of moving to such
regime. This note is based on “Methods for measuring expectations and uncertainty”
in Bianchi (2016). That paper explains how to computed expected values in presence
of regime changes. In the models described above, for each policy rule in place, agents
would have different beliefs about alternative future policy rules. This would lead to
changes in expected values for the endogenous variables of the model.
Consider a MS model:

St = Cξt + TξtSt−1 +RξtQεt (A.2)

where ξt =
{
ξPt , ξ

b
t

}
controls the policy regime ξPt controls the policy rule currently in

place and the alternative policy rule, while the belief regime ξbt controls agents’beliefs
about the possibility of moving to the alternative policy rule.
Let n be the number of variables in St. Let m = B + 1 be the number of Markov-

switching states and define

ξt = i ≡
{
ξPt , ξ

b
t = i

}
, i = 1, ..., B + 1.

Define the mn× 1 column vector qt as:

qt
mn×1

=
[
q1′
t , ..., q

m′
t

]′
where the individual n × 1 vectors qit = E0

(
St1ξt=i

)
≡ E

(
St1ξt=i|I0

)
and 1ξt=i is an

indicator variable that is one when belief regime i is in place and zero otherwise. Note
that:

qit = E0

(
St1ξt=i

)
= E0 (St|ξt = i)πit

where πit = P0 (ξt = i) = P (ξt = i|I0). Therefore we can express µt = E0 (St) as:

µt = E0 (St) =
∑m

i=1 q
i
t = wqt

where the matrix w
n×mn

= [In, ..., In] is obtained placing side by side m n-dimensional

identity matrices. Then the following proposition holds:

PROPOSITION 1: Consider a Markov-switching model whose law of motion can be
described by (A.2) and define qit = E0

(
St1ξt=i

)
for i = 1...m. Then qjt = Cjπ

j
t +∑m

i=1 Tjq
i
t−1pji.

It is then straightforward to compute expectations conditional on the information
available at a particular point in time. Suppose we are interested in µt+s|t ≡ Ebt (St+s),
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i.e. the expected value for the vector St+s conditional on the information set available
at time t. If we define:

qt+s|t =
[
q1′
t+s|t, ..., q

m′
t+s|t

]′
where qit+s|t = Ebt

(
St+s1ξt=i

)
= Ebt (St+s|ξt = i) πit+s|t, where π

i
t+s|t ≡ P

(
ξt+s = i|It

)
, we

have
µt+s|t = Ebt (St+s) = wqt+s|t, (A.3)

where for s ≥ 1, qt+s|t evolves as:

qt+s|t = Cπt+s|t + Ωqt+s−1|t (A.4)

πt+s|t = Hbπt+s−1|t (A.5)

with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (T1, ..., Tm)

(
Hb ⊗ In

)
, and C

mn×m
= bdiag (C1, ..., Cm) ,

where e.g., C1 is the n× 1 vector of constants in regime 1, ⊗ represents the Kronecker
product and bdiag is a matrix operator that takes a sequence of matrices and use them
to construct a block diagonal matrix.
The formulas above are used to compute expectations conditional on each belief

regime ξbt and policy rule regime ξ
P
t . For each composite regime ξt =

{
ξPt , ξ

b
t

}
, we can

obtain a forecast for each of the variables of the model. For example, conditional on ξPt
and ξbt = j in place we have

qt,ξt=j = ej ⊗ St
where ej is a variable that has elements equal to zero except for the one in position ξ

b
t .

For example, with B = 5 belief regimes and ξbt = 3 we have

qt,ξt=3 = [0′,0′, S ′t,0
′,0′,0′]

′
.

where 0 and St are column vectors with n rows. We have B + 1 subvectors in qt,ξt=j
to take into account the alternative policy mix. The fact that all subvectors are zero
except for the one corresponding to the belief regime b = 3 reflects the assumption
that agents can observe the current state St and, by definition, their own beliefs (while
the econometrician cannot observe any of the two and she uses macro data and survey
expectations to estimate both St and agents’beliefs).
Thus, suppose we want to compute the expected value for a variable x over the next

year under the assumption that agents’beliefs are ξbt = j. With monthly data, we have:

Ebt (xt,t+s|ξt = j) =
∑12

s=1 E
b
t (xt+s|ξt = j)

= ex
∑12

s=1 µt+s|t,ξt=j

= exw
∑12

s=1 qt+s|t,ξt=j

where for s ≥ 1, qt+s|t evolves as:

qt+s|t,ξt=j = Cπt+s|t + Ωqt+s−1|t,ξt=j (A.6)

πt+s|t,ξt=j = Hbπt+s−1|t,ξt=j (A.7)
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with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (T1, ..., Tm)

(
Hb ⊗ In

)
, and C

mn×m
= bdiag (C1, ..., Cm) ,

where e.g., C1 is the n× 1 vector of constants in regime 1, ⊗ represents the Kronecker
product and bdiag is a matrix operator that takes a sequence of matrices and use them to
construct a block diagonal matrix. The recursive algorithm is initialized with πt|t,ξt=j =

1ξt=j and qt,ξt=j = ej ⊗ St.
The formulas (A.6) and (A.7) can be written in a more compact form. If we define

q̃t|t = [q′t|t, π
′
t|t]
′, with πt|t a vector with elements πit|t ≡ P (ξt = i|It) we can compute the

conditional expectations in one step:

µt+s|t = Ebt (St+s) = w̃Ω̃sq̃t|t (A.8)

where w̃ = [w, 0n×m] . The formula above can be used to compute the expected value
from the point of view of the agent of the model with beliefs ξt = j:

Ebt (xt+s|ξt = j) = exµt+s|t,ξt=j = exw̃Ω̃sq̃t|t,ξbt=j = exwΩ̃s{1,nm},{n(j−1)+1,nj}︸ ︷︷ ︸
Zξt,xt+s

St︸︷︷︸
(n×1)

+ exwΩ̃s{1,nm},nm+j︸ ︷︷ ︸
Dξt,xt+s

(A.9)

whereDξ.t,xt+s is a scalar, Zξ.t,xt+s is an (1× n) vector, Ω̃s
{1,nm},{n(j−1)+1,nj} is the submatrix

obtained taking the first nm rows and the columns from n(j − 1) + 1 to nj of Ω̃s, while
Ω̃s
{1,nm},nm+j is the submatrix obtained taking the first nm rows and the nm+ j column

of Ω̃s. Thus, we have that conditional on one belief regime and a policy rule regime, we
can map the current state of the economy St into the expected value reported in the
survey. The matrix algebra in (A.9) returns the same results of the recursion in (A.6)
and (A.7).
To see what the formulas above do, consider a simple example with B = 2 and we
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are currently in belief regime b = 2:

Ebt (xt+s|ξt = 2) = exw̃Ω̃sq̃t|t,ξt=2 = exw̃Ω̃s



0
n×1

St
n×1

0
n×1

0
1
0



= exw̃



Ω̃s
11 Ω̃s

12 Ω̃s
13 Ω̃s

14 Ω̃s
15 Ω̃s

16

Ω̃s
21 Ω̃s

22 Ω̃s
23 Ω̃s

24 Ω̃s
25 Ω̃s

26

Ω̃s
31 Ω̃s

32 Ω̃s
33 Ω̃s

34 Ω̃s
35 Ω̃s

36

Ω̃s
44 Ω̃s

45 Ω̃s
46

Ω̃s
54 Ω̃s

55 Ω̃s
56

Ω̃s
64 Ω̃s

65 Ω̃s
66





0
n×1

St
n×1

0
n×1

0
1
0



= exw̃



Ω̃s
12St + Ω̃s

15

Ω̃s
22St + Ω̃s

25

Ω̃s
32St + Ω̃s

35

Ω̃s
44

Ω̃s
54

Ω̃s
64


= ex

(
Ω̃s

12 + Ω̃s
22 + Ω̃s

32

)
St + ex

(
Ω̃s

15 + Ω̃s
25 + Ω̃s

35

)
Finally, suppose we are interested in the forecast Eb

t

(
xt,t+s|ξbt = j, ξpt

)
:

Ebt (xt,t+s|ξt = j) =
[
ex
∑12

s=1wΩ̃s
{1,nm},{n(j−1)+1,nj}

]
︸ ︷︷ ︸

Zξt,xt,t+s

St︸︷︷︸
(n×1)

+ ex
∑12

s=1wΩ̃s
{1,nm},nm+j︸ ︷︷ ︸

Dξt,xt,t+s

(A.10)
Thus, we can include Zξt,xt,t+s as a row in Zξt and Dξt,xt,t+s as a row in Dξt in the

mapping from the model to the observables described in (A.13). Note that the matrix
Z and vector D are now regime dependent.
For GDP growth, we are interested in the average growth over a certain horizon.

Our state vector contains ỹt. Thus, we can use the following approach:

Ebt
[
(gdpt+h − gdpt)h−1|ξt = j

]
= Ebt

[(
ỹt+h − ỹt +

∑h
s=1 ĝt + hg

)
h−1|ξt = j

]
= h−1Ebt [ỹt+h|ξt = j]− h−1ỹt + g + h−1

∑h
s=1 ĝt

where g is the average growth rate in the economy and ỹt is GDP in deviations from the
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trend. With deterministic growth we have gdpt+h− gdpt−hg ≡ ỹt+h− ỹt. We then have

Ebt
[
(gdpt+h − gdpt)h−1|ξt = j

]
= h−1Ebt [ỹt+h|ξt = j]− h−1ỹt + g

= h−1

eỹwΩ̃s
{1,nm},{n(j−1)+1,nj}︸ ︷︷ ︸

Zξt,ỹt+s

St︸︷︷︸
(n×1)

+ eỹwΩ̃s
{1,nm},nm+j︸ ︷︷ ︸
Dξt,ỹt+s

− eỹSt

+ g

= h−1
[
eỹwΩ̃s

{1,nm},{n(j−1)+1,nj} − eỹ
]

︸ ︷︷ ︸
Zξt,ỹt+s−ỹt

St︸︷︷︸
(n×1)

+ h−1 eỹwΩ̃s
{1,nm},nm+j︸ ︷︷ ︸

Dξt,ỹt+s

+ g

The expected values for the endogenous variables depend on the perceived transition
matrix Hb and the properties of the alternative regime. The latter can be seen by recall-
ing that the regime ξt = B + 1 applies to the perceived Alternative regime. Thus, data
from survey expectations and futures markets provide information about the perceived
probability of moving across belief regimes as well as the parameters of the Alternative
regime.

H Simplified Example of Mixed-Frequency Filtering Algorithm

In this appendix, we present a simplified example to understand how to interpret the
mixed frequency filtering that we implement in our analysis of FOMC announcements.
Let t denote a month. Let dh denote the number of time units that have passed

within a month when we have reached a particular point in time, and let nd denote the
total number of time units in the month. Then 0 ≤ dh/nd ≤ 1, and the intramonth
time period is denoted t − 1 + δh with δh ≡ dh/nd ∈ [0, 1] . For example, if the time
unit is in days and we are at the beginning of the 11th day in a 31 day month, then
δh ≡ 10/31 = 0.3226.

Consider a simple state space model in which there is a single state for inflation,
which follows an autoregressive process with no regime changes. The process is specified
at monthly frequency:

πt = ρπt−1 + σπεπ,t (A.11)

Investors are always asked to predict inflation for a particular time period, for exam-
ple next month (t + 1), even when surveyed intramonth (t− 1 + δh < t). Furthermore,
agents know the data generating process (A.11) and understand that the process is spec-
ified at monthly frequency. At the end of month t, we assume that the data are fully
revealed and, accordingly, inflation expectations for the next month (t + 1) reflect the
realized value of inflation at the end of the current month (t):

Et [πt+1] = ρπt.
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Given the realized value of πt, the above forecast will in general differ from the two-
month-ahead forecast of the same object πt+1 as of the end of t− 1:

Et−1 [πt+1] = ρ2πt−1.

Now suppose we are within month t at day t− 1 + δh, where δh < 1. At that time,
investors are presumed to have a belief or nowcast of what inflation will be at the end
of t. We assume that such nowcasts are formed from extensive information sets that
are by definition unobserved by the econometrician. Denote the investor’s nowcast of
πt as of at time t − 1 + δh as πt\t−1+δ, where we use the symbol “\”to indicate that
the conditioning is with respect to the agent’s unobserved information set. (Given that
investors observe πt at the end of the month, πt\t ≡ πt). Using the nowcast πt\t−1+δ,
investors can update their forecast of πt+1 relative to what it was at the end of t − 1

using
Et−1+δh [πt+1] = ρπt\t−1+δ = ρ2πt−1 + ρσπεπ,t\t−1+δ.

This shows that the nowcast implicitly depends on the perceived shock επ,t\t−1+δ, which
denotes the agent’s belief about what επ,t will be revealed to be at the end of the month
t, given any new information received between t− 1 and t− 1 + δh. We do not attempt
to model how investors obtain these nowcasts or what information is summarized by
επ,t\t−1+δ, a task that would be diffi cult if not impossible given the large amount of
information processed by financial markets and professional forecasters.
Instead, we develop a filtering algorithm to allow an econometrician to infer revisions

in investor expectations/nowcasts induced by FOMC announcements. To do this, the
econometrician must have access to high frequency forward-looking data from markets
or surveys summarizing investor expectations. Suppose for this example that we ob-
serve a daily inflation expectations measure that proxies for investors evolving inflation
expectations, where the expectation as of time t− 1 + δh is denoted Et−1+δh [πt+1]o . We
use superscipt o to denote the observed value of variables in the data.
More formally, we have the following state space representation of this simple model.

1. At the end of month t, both inflation and inflation expectations are observed. The
observation equation is:[

πot
Et [πt+1]o

]
︸ ︷︷ ︸

≡Xt

=

[
0
0

]
︸ ︷︷ ︸
≡Dt

+

[
1
ρ

]
︸ ︷︷ ︸
≡Zt

πt +

[
σu,π 0

0 σu,E[π]

]
︸ ︷︷ ︸

≡Ut

[
uπ,t
uE[π],t

]

where we allow for observation errors to avoid stochastic singularity because we
have one stochastic process (model inflation process) mapped into two observables
(inflation and expected inflation). The transition equation is given by (A.11).
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2. Intramonth, only the high frequency inflation expectations are obseved. We can
use them to filter out what agents think inflation will be over the current month.
As explained above, this is equivalent to filtering out what the perceived shock
will be at the end of the current month:[

−
Et−1+δh [πt+1]o

]
︸ ︷︷ ︸

≡Xt−1+δh

=

[
−
0

]
︸ ︷︷ ︸
≡Dt−1+δh

+

[
−
ρ

]
︸ ︷︷ ︸
≡Zt−1+δh

πt\t−1+δ +

[
− −
− σu,E[π],t

]
︸ ︷︷ ︸

≡Ut−1+δh

[
uπ,t−1+δh
uE[π],t−1+δh

]

where
πt\t−1+δ = ρπt−1 + σπεπ,t\t−1+δ (A.12)

This provides a specific interpretation of our filtering results. We do not interpret
high frequency revisions in expectations around FOMC announcements as stemming
from macroeconomic shocks occurring over a 30 minute window. Instead, we interpret
these as revisions in investor beliefs about what the shocks for the month will turn out
to be. In some cases the information revealed during an FOMC announcement will
completely remove any uncertainty about what a variable will be at the end of the
month, such as when the announcent is about a change in the target federal funds rate.
For other variables, the announcement will merely constitute a noisy signal.
The idea is to use the filter to infer investor nowcasts at high frequency around

news events, without having to take a stand on the unobservable nowcasting model and
information set investors use to obtain and update these nowcasts. In what follows, we
use the suffi x (t\t− 1 + δh) to denote filtered objects related to investor nowcasts which
are implicitly based on the agent’s latent information set. We use the symbol “|”to refer
to conditioning in the filter that is with respect to the econometrician’s information set.
Steps in the high frequency filtering:

1. Suppose the econometrician has information up through month t−1 and new high
frequency data arrives at t− 1 + δh. Compute one step-ahead nowcast estimates:

π(t\t−1+δh)|t−1 = ρπt−1|t−1

P(t\t−1+δh)|t−1 = ρ2Pt−1|t−1 + σ2
π

2. Compute forecast error given high frequency information at t− 1 + δh:

e(t\t−1+δh)|t−1+δh,t−1 = Xt−1+δh −Dt−1+δh − Zt−1+δhπ(t\t−1+δh)|t−1

f(t\t−1+δh)|t−1+δh,t−1 = Zt−1+δhP(t\t−1+δh)|t−1Z
′
t−1+δh

+ U2
t−1+δh

3. Update estimates of nowcast and its variance

π(t\t−1+δh)|t−1+δh = π(t\t−1+δh)|t−1 + P(t\t−1+δh)|t−1Z
′
t−1+δh

(
f(t\t−1+δh)|t−1+δh,t−1

)−1
e(t\t−1+δh)|t−1+δh,t−1

P(t\t−1+δh)|t−1+δh = P(t\t−1+δh)|t−1 − P(t\t−1+δh)|t−1Z
′
t−1+δh

(
f(t\t−1+δh)|t−1+δh,t−1

)−1
Zt−1+δhP(t\t−1+δh)|t−1
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4. Repeat the above procedure the day before and the after an FOMC announcement
to infer revisions in nowcasts due to Fed news.

I Estimation and Filtering

The solution of the model takes the form of a Markov-switching vector autoregression
(MS-VAR) in the state vector St =

[
SMt ,mt, pdt, kt, lpt,Ebt (mt+1) ,Ebt (pdt+1)

]
. Here,

SMt is a vector of macro block state variables given by SMt ≡ [ỹt, gt, πt, it, πt, ft]
′. The

asset pricing block of equations involves conditional subjective variance terms that are
affected by Markov-switching random variables in the model. The subsection “Risk
Adjustment with Lognormal Approximation,”below, explains the approximation used
to preserve lognormality of the entire system.
The model solution in state space form is

Xt = Dξt,t + Zξt,t [S ′t, ỹt−1]
′
+ Utvt

St = C
(
θξPt , ξ

b
t ,H

b
)

+ T (θξPt , ξ
b
t ,H

b)St−1 +R(θξPt , ξ
b
t ,H

b)Qεt

Q = diag (σε1 , ..., σεG) , εt ∼ N (0, I)

U = diag (σ1, ..., σX) , vt ∼ N (0, I)

ξPt = 1...NP , ξ
b
t = 1, ...B + 1,Hb

ij = p
(
ξbt = i|ξbt−1 = j

)
.

where Xt is a NX×1 vector of data, vt are a vector of observation errors, Ut is a diagonal
matrix with the standard deviations of the observation errors on the main diagonal, and
Dξt,t, and Zξt,t are parameters mapping the model counterparts of Xt into the latent
discrete- and continuous-valued state variables ξt and St, respectively, in the model.
The vector Xt of observables is explained below. Note that the parameters Dξt,t, Zξt,t,
and Ut vary with t independently of ξt because not all variables are observed at each
data sampling period. To reduce computation time, we calibrate rather than estimate
the parameters in U = diag (σ1, ..., σX) such that the variance of the observation error
is 0.05 times the sample variance of the corresponding variable in X. In addition,
some of the parameters in the system are dependent on the current policy rule and
the associated Alternative rule, ξPt , and the unobserved, discrete-valued (B + 1)-state
Markov-switching variable ξbt

(
ξbt = 1, 2, ..., B + 1

)
with perceived transition probabilities

Hb =


pb1ps pb2p∆1|2 · · · pbBp∆1|B 0
pb1p∆2|1 pb2ps pbBp∆2|B 0
...

...
. . .

...
...

pb1p∆B|1 pbBps 0
1− pb1 1− pb2 · · · 1− pbB pB+1,B+1 = 1

 ,
where Hb

ij ≡ p
(
ξbt = i|ξbt−1 = j

)
, and

∑
i 6=j p∆i|j = 1 − ps. We take the parameters

pbi from a discretized estimated beta distribution, where the mean and variance of the
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beta distribution are estimated. We specify the probability of transitioning to belief
i tomorrow, conditional on having belief j today, while remaining in the same policy
regime, as p∆i|j ≡ (1− ps)

(
ρ
|i−j−1|
b /

∑
i 6=j ρ

|i−j−1|
b

)
, where ps and ρb < 1 are parameters

to be estimated and |i − j − 1| measures the distance between beliefs j and i, for
i 6= j ∈ (1, 2, ..., B) . This creates a decaying function that makes the probability of
moving to contiguous beliefs more likely than jumping to very different beliefs. For
computational reasons, we also eliminate very unlikely transitions (p∆i|j < 0.0001) by
setting their probabilities to zero.
We use the following notation:

CξPt ,i = C
(
θξPt , ξ

b
t = i

)
, TξPt ,j = T

(
θξPt , ξ

b
t = i

)
, RξPt ,j

= R
(
θξPt , ξ

b
t = i

)
Di,t = Dξt|ξbt=i, Zi,t = Zξt|ξbt=i.

Kim’s Approximation to the Likelihood and Filtering We use Kim’s (Kim
(1994)) basic filter and approximation to the likelihood.
First note that, from the econometricians viewpoint, investors are only ever observed

in the first B regimes, since the perceived Alternative is never actually realized. For this
reason the filtering algorithm for the latent belief regimes involves only the upper B×B
submatrix of Hb, rescaled so that the elements sum to unity. Even though the filtering
loops over just B states rather than B + 1, this is done conditional on the parameters
for the full (B + 1)× (B + 1) transition matrix, which is estimated from all the data by
combining the likelihood with the priors, as described below.
The sample is divided into NP policy regime subperiods indexed by ξ

P
t . Denote the

last observation of each regime subperiod of the sample T1, ..., TNP . The algorithm for
the basic filter is described as follows.
Initiate values S̃0|0, P0|0, for the Kalman filter and Pr

(
ξb0
)

= π0 for the Hamilton
filter and initialize L (θ) = 0. Denote X t−1 ≡ {X1, ..., Xt−1} and ξPT =

{
ξP1 , ..., ξ

P
T

}
.

As explained for the simplified example above, in the mixed-frequency estimation
we use high frequency, forward-looking intramonth data to infer updates to investor
nowcasts of the state space that will be revealed at the end of the month. Our “final”
estimates of the state space are obtained using a more complete set of data available
at the end of each month. Let t denote a month. Let dh denote the number of time
units that have passed within a month when we have reached a particular point in time,
and let nd denote the total number of time units in the month. Then 0 ≤ dh/nd ≤ 1,

and the intramonth time period is denoted t − 1 + δh with δh ≡ dh/nd ∈ [0, 1] . For
example, δ100 could denote the point within the month that is exactly 10 minutes before
an FOMC meeting during the month, while δ130 could denote point in the month 20
minutes after the same meeting. Intra-month observations used just prior to an FOMC
meeting will typically include the daily BBG consensus forecasts and Baa credit spread
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from the day before the meeting, and the 10-minutes before FFF, ED and stock market
data. Intermonth observations for the point of the month right after the FOMC meeting
will typically include the daily BBG consensus forecasts and Baa spread from the day
after the meeting, and the 20-minutes after FFF, ED and stock market data.
Suppose we are within month t at day t − 1 + δh, where δh < 1. Investors are

presumed to have a belief or nowcast of what S will be at the end of t. We assume
that such nowcasts are formed from extensive information sets that are by definition
unobserved by the econometrician. The filtering algorithm below is designed to allow
the econometrician to infer investor nowcasts at any time t−1+δh by using the structural
model combined with high frequency forward-looking data, without taking a stand on
the investor’s unobservable information sets and nowcasting model. We use the suffi x
(t\t− 1 + δh) to denote filtered objects related to investor nowcasts which are implicitly
based on the agent’s latent information set, i.e., S(t\t−1+δh) refers to the investor’s nowcast
of St based on information through t − 1 + δh. Given that investors observe St at the
end of t, St\t ≡ St. We use the symbol “|”to refer to conditioning in the filter that is
with respect to the econometrician’s information set.

• For t = 1 to T1 and θξPt relevant when ξ
P
t = 1:

1. Suppose the econometrician has information up through month t−1 and new high
frequency data arrives at t − 1 + δh. Conditional on ξ

b
t−1 = j and ξbt = i run the

Kalman filter given below for i, j = 1, 2, ..., B to update estimates of the latent
state:

S
(i,j)
(t\t−1+δh)|t−1

= CξPt ,i
+ TξPt ,i

Sj
t−1|t−1

P
(i,j)
(t\t−1+δh)|t−1

= TξPt ,i
P j
t−1|t−1T

′
ξPt ,i

+RξPt ,i
Q2R′

ξPt ,i
with Q2 ≡ QQ′

e
(i,j)
(t\t−1+δh)|t−1+δh,t−1

= Xt−1+δh −Di,t−1+δh − Zi,t−1+δh
[
S
(i,j)′
(t\t−1+δh)|t−1

, ỹt−1
]

f
(i,j)
(t\t−1+δh)|t−1+δh,t−1

= Zi,t−1+δhP
(i,j)
(t\t−1+δh)|t−1

Z′i,t−1+δh + U2t−1+δh with U2t−1+δh ≡ Ut−1+δhU
′
t−1+δh

S
(i,j)
(t\t−1+δh)|t−1+δh

= S
(i,j)
(t\t−1+δh)|t−1

+ P
(i,j)
(t\t−1+δh)|t−1

Z′i,t−1+δh

(
f
(i,j)
(t\t−1+δh)|t−1+δh,t−1

)−1
e
(i,j)
(t\t−1+δh)|t−1+δh,t−1

P
(i,j)
(t\t−1+δh)|t−1+δh

= P
(i,j)
(t\t−1+δh)|t−1

− P (i,j)
(t\t−1+δh)|t−1

Z′i,t−1+δh

(
f
(i,j)
(t\t−1+δh)|t−1+δh,t−1

)−1
Zi,t−1+δhP

(i,j)
(t\t−1+δh)|t−1

2. Run the Hamilton filter to calculate new regime probabilities Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
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and Pr
(
ξbt |Xt−1+δh , X

t−1
)
, for i, j = 1, 2, ..., B

Pr
(
ξbt , ξ

b
t−1|Xt−1

)
= Pr

(
ξbt |ξbt−1

)
Pr
(
ξbt−1|Xt−1

)
`
(
Xt−1+δh |X

t−1) =
∑B
j=1

∑B
i=1 f

(
Xt−1+δh |ξ

b
t−1 = j, ξbt = i,Xt−1

)
Pr
[
ξbt−1 = j, ξbt = i|Xt−1

]
f
(
Xt−1+δh |ξ

b
t−1 = j, ξbt = i,Xt−1

)
= (2π)−NX/2 |f (i,j)

t|t−1+δh
|−1/2

exp

{
−1

2
e
(i,j)′
(t\t−1+δh)|t−1+δh,t−1

f
(i,j)
(t\t−1+δh)|t−1+δh,t−1

e
(i,j)
(t\t−1+δh)|t−1+δh,t−1

}
L (θ) = L (θ) + ln

(
`
(
Xt−1+δh |X

t−1))
Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)

=
f
(
Xt−1+δh |ξ

b
t , ξ

b
t−1, X

t−1)Pr
(
ξbt , ξ

b
t−1|Xt−1)

`
(
Xt−1+δh |Xt−1)

Pr
(
ξbt |Xt−1+δh , X

t−1
)

=

B∑
j=1

Pr
(
ξbt , ξ

b
t−1 = j|Xt−1+δh , X

t−1
)

3. Using Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
and Pr

(
ξbt |Xt−1+δh , X

t−1
)
, collapse the B × B

values of S(i,j)
t|t−1+δh

and P (i,j)
t|t−1+δh

into B values represented by Si(t\t−1+δh)|t−1+δh
and

P i
(t\t−1+δh)|t−1+δh

:

Si(t\t−1+δh)|t−1+δh
=

∑B
j=1 Pr

[
ξbt−1 = j, ξbt = i|Xt−1+δh , X

t−1
]
S

(i,j)
(t\t−1+δh)|t−1+δh

Pr
[
ξbt = i|Xt−1+δh , X

t−1
]

P i(t\t−1+δh)|t−1+δh =

∑B
j=1 Pr

[
ξbt−1 = j, ξbt = i|Xt−1+δh , X

t−1] P
(i,j)
t|t−1+δh

+
(
Si
(t\t−1+δh)t−1+δh

− S(i,j)
(t\t−1+δh)|t−1+δh

)
(
Si
(t\t−1+δh)|t−1+δh

− S(i,j)
(t\t−1+δh)|t−1+δh

)′


Pr
[
ξbt = i|Xt−1+δh , Xt−1]

4. If t − 1 + δh = t, move to the next period by setting t − 1 = t and returning to
step 1

5. else, store the updated S(j)
(t\t−1+δh)|t−1+δh

, P (j)
(t\t−1+δh)|t−1+δh

, Pr
(
ξbt , ξ

b
t−1|Xt−1+δh , X

t−1
)
,

and Pr
(
ξbt |Xt−1+δh , X

t−1
)
, move to the next intramonth time unit δk > δh, and

repeat steps 1-5 keeping t− 1 fixed.

• At t = T1 + 1 use θξPt relevant when ξ
P
t = 2, set t− 1 = t, and repeat steps 1-5

• At t = T2 + 1 use θξPt relevant when ξ
P
t = 3, set t− 1 = t, and repeat steps 1-5

• ...

• At t = TNP−1 + 1 use θξPt relevant when ξ
P
t = NP , set t− 1 = t and repeat steps

1-5

• At t = TN = T stop. Obtain L (θ) =
∑T

t=1

∑
δh∈(0,1) ln (` (Xt−1+δh|X t−1)) .
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The algorithm above is described in general terms; in principle the intramonth loop
could be repeated at every instant within a month for which we have new data. Since we
have only a subset of data intramonth, we vary the dimension of the vector of observables
Xt−1+δh as a function of time t − 1 + δh. In application, we repeat steps 1-5 only at
certain minutes or days pre- and post-FOMC meeting. We initialize the algorithm
with guesses for the Markov-switching parameters that vary across regime subperiods
(only the policy rule parameters), while the fixed-coeffi cient parameters have guessed
values that are identical across regime subperiods. These guesses are used to evaluate
the posterior by combining the likelihood L (θ) with the priors. We continue guessing
parameters and evaluating the posterior in this manner, until we find parameter values
that maximize the posterior. With the posterior mode in hand, we evaluate the entire
posterior distribution, as described below.

Observation Equation The mapping from the variables of the model to the ob-
servables in the data can be written using matrix algebra to obtain the observation
equation Xt = Dξt,t+Zξt,t [S ′t, ỹt−1]′+Utvt. Denote ĝt ≡ gt−g, and l̂pt = lpt− lp. Using
the definition of stochastically detrended output, we have ỹt = ln (Yt/At) , ∆ln (At) ≡
gt = g+ρg (gt−1 − g)+σgεg,t ⇒ ỹt− ỹt−1 = ∆ln (Yt)−gt ⇒ ∆ln (Yt) = ỹt− ỹt−1+gt = ỹt−
ỹt−1 + ĝt + g. Annualizing the monthly growth rates to get annualized GDP growth we
have ∆ln (GDPt) ≡ 12∆ln (Yt) = 12g + 12 (ỹt + ĝt − ỹt−1) . For quarterly GDP growth
we interpolate to monthly frequency using the method in Stock and Watson (2010). For
our other quarterly variables (SPF survey measures) and our biannual Liv survey, we
drop these from the observation vector in the months for which they aren’t available.
The observation equation when all variables in Xt are available takes the form:



∆ln (GDPt)
Inflation
FFR

SOC (Inflation)12m
SOC (Inflation)60m

f
(0)
t

BC (Inflation)12m
SPF (Inflation)12m
Liv (Inflation)12m

SPF (GDPDInfl)12m
BBG (Inflation)12m
Liv (Inflation)120m
SPF (Inflation)120m

BC (FFR)12m
BC (∆GDP )12m
BBG (∆GDP )12m
SPF (∆GDP )12m

f
(n)
t

Baat
pgdpt
EGDPt



=



12g
0
0
0
0
0

Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+12
Dξt,πt,t+120
Dξt,πt,t+120
Dξt,it,t+12
Dξt,yt+s
Dξt,yt+s
Dξt,yt+s
Dξt,it+n
CBaa

ln (K) + g
K



+



12 (ỹt + ĝt − ỹt−1)
12πt
12it[

h+ (h− 1)φ+ (h− 2)φ2 + ...+ φ11
]

(1− φ)πt + Σ12j=1φ
jπt[

h+ (h− 1)φ+ (h− 2)φ2 + ...+ φ59
]

(1− φ)πt + Σ60j=1φ
jπt

12it
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+12St
Zξt,πt,t+120St
Zξt,πt,t+120St
Zξt,it,t+12,St
Zξt,yt+s−ytSt
Zξt,yt+s−ytSt
Zξt,yt+s−ytSt
Zξt,it+nSt

Bl̂pt
kt − k + pdt + ĝt + ỹt − ỹt−1

K (kt − k)



(A.13)

+Utvt
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where we have used the fact that expectations for the macro agent in the model is:

Emt [πt,t+h] =
[
h+ (h− 1)φ+ (h− 2)φ2 + ...+ φh−1

]
αmt +

[
φ+ φ2 + ...+ φh

]
πt

=
[
h+ (h− 1)φ+ (h− 2)φ2 + ...+ φh−1

]
(1− φ) πt +

[
φ+ φ2 + ...+ φh

]
πt

The term Inflation in the above stands for CPI inflation; GDPDInfl refers to GDP
deflator inflation. The variable f (n)

t refers to the time-t contracted federal funds fu-
tures market rate. Here we use n = {6, 10, 20, 35} . The variable pgdp is the log of the
SP500 capitalization-to-lagged GDP ratio, i.e., ln (Pt/GDPt−1); EGDPt is the level of
the SP500 earnings-to-GDP ratio; taking a first order Taylor approximation of EGDPt
around the log earnings-output ratio, we have EGDPt ≈ K + K (kt − k), where K is
the steady state level of EGDPt = exp (k). Baat is the Baa spread described above,
where CBaa and B are parameters. To allow for the fact that the true convenience yield
is only a function of Baat, we add a constant CBaa to our model-implied convenience
yield lpt and scale it by the parameter B to be estimated. Unless otherwise indicated,
all survey expectations are 12 month-ahead forecasts in annualized units.
The above uses multiple measures of observables on a single variable, e.g., investor

expectations of inflation 12 months ahead are measured by four different surveys (BC,
SPF, LIV, and BBG). In the filtering algorithm above, these provide four noisy signals
on the same latent variable.

Computing the Posterior

The likelihood is computed with the Kim’s approximation to the likelihood, as explained
above, and then combined with a prior distribution for the parameters to obtain the
posterior. A block algorithm is used to find the posterior mode as a first step. Draws from
the posterior are obtained using a standard Metropolis-Hastings algorithm initialized
around the posterior mode. Here are the key steps of the Metropolis-Hastings algorithm:

• Step 1: Draw a new set of parameters from the proposal distribution: ϑ ∼ N
(
θn−1, cΣ

)
• Step 2: Compute α (θm;ϑ) = min

{
p (ϑ) /p

(
θm−1

)
, 1
}
where p (θ) is the posterior

evaluated at θ.

• Step 3: Accept the new parameter and set θm = ϑ if u < α (θm;ϑ) where u ∼
U ([0, 1]), otherwise set θm = θm−1

• Step 4: If m ≥ nsim, stop. Otherwise, go back to step 1

The matrix Σ corresponds to the inverse of the Hessian computed at the posterior
mode θ. The parameter c is set to obtain an acceptance rate of around 30%. We use
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four chains of 540, 000 draws each (1 of every 200 draws is saved). The four chains
combined are used to form an estimate of the posterior distribution from which we make
draws. Convergence is checked by using the Brooks-Gelman-Rubin potential reduction
scale factor using within and between variances based on the four multiple chains used
in the paper.

J Risk Adjustment with Lognormal Approximation

The asset pricing block of equations involves conditional subjective variance terms that
are affected by Markov-switching random variables in the model. We extend the ap-
proach in Bansal and Zhou (2002) of approximating a model with Markov-switching
random variables using a risk-adjustment while maintaining conditional log-normality.
Consider the forward looking relation for the price-payout ratio:

PD
t = Ebt

[
Mt+1

(
PD
t+1 +Dt+1

)]
PD
t

Dt

= Ebt
[
Mt+1

Dt+1

Dt

(
PD
t+1

Dt+1

+ 1

)]
.

Taking logs on both sides, we get:

pdt = log
[
Ebt [exp (mt+1 + ∆dt+1 + κpd,0 + κpd,1pdt+1)]

]
.

Applying the approximation implied by conditional log-normality we have:

pdt = κ0 + Ebt [mt+1 + ∆dt+1 + κpd,1pdt+1] +

+.5Vbt [mt+1 + ∆dt+1 + κpd,1pdt+1] .

To implement the solution, we follow Bansal and Zhou (2002) and approximate the
conditional variance as the weighted average of the objective variance across regimes,
conditional on ξt. Using the simpler notation of the state equation,

St = Cξt + TξtSt−1 +RξtQεt,

the approximation takes the form

Vbt [xt+1] ≈ e′xEbt
[
Rξt+1QQ

′R′ξt+1

]
ex (A.14)

where ex is a vector used to extract the desired linear combination of the variables in
St. This approximation maintains conditional log-normality of the entire system. In
the solution, Cξt depends on the risk adjustment term V b

t [mt+1 + ∆dt+1 + κpd,1pdt+1]

which depends on Rξt. Conditional on the risk adjustment term, the numerical solution
delivers the appropriate coeffi cients, Cξt , Tξt, and Rξt . To solve this fixed point problem,
we employ the iterative approach of Bianchi, Kung, and Tirskikh (2018). Specifically, we
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solve the model and get St for an initial guess on the risk adjustment V b
t , denoted V

b(0)
t .

Given the approximation (A.14) the term V bt [mt+1 + ∆dt+1 + κpd,1pdt+1] only depends on
ξt. For each policy regime ξ

P
t our initial guess V

b(0)
t is therefore one value of V b

t for each
of the belief regimes ξbt . The initial solution based on the initial guess V

b(0)
t gives an

initial value for Rξt, denoted R
(0)
ξt
. So far we have not used (A.14). Then, given R(0)

ξt
, we

use (A.14) to get an updated V b(1)
t ≈ exE

b
t

[
R

(0)
ξt+1

QQ′R
(0)′
ξt+1

]
ex. Given the updated risk

adjustment V b(1)
t we resolve the model for St one more time, and verify that the new

Rξt+1 is the same as the one obtained before, i.e., the same as R
(0)
ξt+1
. Note that, although

V b
t [xt+1] depends on Rξt+1 only (it does not depend on Cξt due to the approximation
(A.14)), Rξt+1 does not depend on V

b
t . Thus, we can stop here.

K Allowing for Belief Uncertainty About the Current Policy
Rule

This Appendix shows what would happen in our results if beliefs about the current
rule—holding constant beliefs/uncertainty about future policy regimes—had differed from
the true estimated rule, as in our baseline estimates. First, we redo the shock decom-
positions for the stock market assuming that investors change their belief about the
current rule after a Fed announcement. Figure A.2 shows a decompsition that is anal-
ogous to that in Figure 6 for the top four FOMC announcements in terms of absolute
jumps in the market. Each panel plots the shock decomposition for one announcement.
The first bar labeled “base” shows the results for our baseline model, which repeats
information from Figure (6). The next three bars show what would happen if investors
had—in constrast to our baseline model—updated beliefs about the current policy rule
in the wake of the announcement. Specifically, we assume they update their belief
about the activism coeffi cient on output growth, ψy as a result of the announcement.
In these cases investors’pre-announcement belief is equal to the true ψy, but the post-
announcement belief changes to some ψ∗y 6= ψy. The plot shows different cases where
ψ∗y =

{
0.5ψy, 1.5ψy, 2ψy

}
. The red triangles show the jump in the market implied by

each specification, while the black dot shows the jump in the data. For the baseline
model results shown in the first bars, the black dots and red triangles coincide. For the
other specifications, the differences show the result of allowing investors to update their
assessment of the current policy rule as a result of the announcement. We can see that
the differences are negligble: the difference between the baseline model (black dot) and
the red triangles in each case are small. Moreover, the relative contribution of different
perceived shocks is virtually unchanged from the baseline case. In particular, changing
perceptions about the economic state and/or beliefs about future regime change remain
important contributors to the market’s jump in all cases.
Next, we show how the model’s implication for historical variation in the stock market
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Figure A.2: Effects of Post-FOMC Updates to Beliefs About Current Rule
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Notes: The figure reports a decomposition for the 4 most relevant FOMC announcements based on

changes in the SP500-lagged GDP ratio. The first bar on the left gives our baseline estimate where

investors know the true reaction coeffi cient on output growth in the current regime is ψy. The next

three bars show what would have happened if instead investors had updated their belief about ψy to

ψ∗y after the FOMC meeting. The sample is 1961:M1-2020:M2.

would have changed if we allow for different beliefs about the parameters of the current
policy rule. Panel (a) of A.3 repeats the results for the historical variation in the log
stock market-lagged GDP ratio implied by our baseline model and displayed in in panel
(a) of Figure 8 for the post-millennial period. The blue line shows pgdpt, (the log
stock market-to-last months GDP ratio) from our baseline model which coincides with
true data series. The red/dashed (purple/dashed-dotted) line in each panel plots a
counterfactual in which the belief regime with the highest (lowest) perceived probability
of exiting the policy rule was always in place. Repeating the information from 8, we
see that investor beliefs about the conduct of future monetary policy play an outsized
role in stock market fluctuations, as can be observed from the quantitatively large gap
between the red and purple lines in panel (a). Panel (b) of A.3 plots two different
counterfactual series, in which investors believed that the activism coeffi cient ψy on
output growth in the policy rule had been double (half) the true estimated value over
the post-millennial period. Panel (b) shows that a substantial range of different beliefs
about the current policy rule has negligle effects on the historical variation in the stock
market. By contrast, panel (a) shows that differing beliefs about the probability of
switching to a new policy rule that is likely to be in place for an extended period of time
has large effects.
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Figure A.3: Effects of Beliefs About Future Rule vs Beliefs About Current
Rule
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Notes: The blue line in each panel plots the log of the S&P 500 market capitalization-lagged GDP ratio.

In panel (a) this coincides with the historical variation implied by the baseline model. The red/dashed

(purple/dashed-dotted) line in panel (a) plots a counterfactual S&P 500 to GDP ratio in which the

belief regime with the highest (lowest) perceived probability of exiting the policy rule was always in

place. The red/dashed (purple/dashed-dotted) line in panel (b) plots a counterfactual S&P 500 to GDP

ratio in which the investor had counterfactually believed the activism coeffi cient on output growth in

the policy rule had been double (half) the true estimated value. The sample for the counterfactual

spans 2000:M3 to 2020:M2.
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